
Star Death: a novel lightweight metaheuristic algorithm and its
application for dynamic load-balancing in cluster computing

Sasan Harifi1 • Reza Eghbali1 • Seyed Mohsen Mirhosseini1

Received: 25 October 2024 / Revised: 6 March 2025 / Accepted: 9 March 2025
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract
Optimization is a crucial principle in today’s world, applied in various fields to increase profit and efficiency while

reducing cost and time. However, solving optimization problems can be challenging, especially in dynamic environments

where conditions are constantly changing. In the meantime, metaheuristic methods are effective for solving large and

complex optimization problems. Due to the presentation of several algorithms in the last two decades, each of which has

high complexity and is difficult to understand, providing a lightweight algorithm has become a principle. This paper

proposes a novel lightweight metaheuristic algorithm called the Star Death (SD) algorithm, which is inspired by the

physical process of star death. The proposed algorithm aims to model the exact, regular, and optimal physical process of

star death that can solve various problems. For this purpose, the SD algorithm employs an elite strategy that dynamically

adjusts the range of exploration for better solutions. It also uses center-based sampling that emphasizes the center point’s

proximity to solutions, enhancing the optimizer’s effectiveness. In this algorithm, the parameters are adjusted adaptively to

enhance clarity and understanding of the parameter space. To prove application and robustness, the SD algorithm has been

compared with 10 standard and popular metaheuristic algorithms. Based on this, 45 different benchmark test functions

have been used. In addition, the algorithm has been tested and evaluated in high dimensions space. Also, it has been applied

to 57 real-world CEC 2020 problems and six classic engineering problems. As a specific application, the SD algorithm is

also used in solving the dynamic load-balancing problem. The results are generally indicative of the potential of the

proposed algorithm to effectively solve complex optimization problems. The source codes of the SD algorithm are publicly

available at https://github.com/harifi/SD.

Keywords Metaheuristic � Optimization � Star Death (SD) algorithm � Physics-based algorithm � High-dimensional tests �
Lightweight metaheuristic � Engineering problems � Dynamic load-balancing

1 Introduction

The global landscape is experiencing heightened com-

plexity daily. The allocation of resources is constrained,

emphasizing the critical need for their efficient utilization.

The quest for effective and optimal problem-solving

strategies in intricate scenarios necessitates the application

of pragmatic methodologies. Over the past few decades,

numerous optimization techniques have been introduced,

offering versatile applications across a spectrum of opti-

mization challenges [1] and yielding varying degrees of

performance. Diverse factors, such as the characteristics of

search spaces, can exert a notable influence on outcomes.

Within the dichotomy of optimization methodologies—

comprising deterministic and stochastic approaches—

stochastic optimization methods exhibit enhanced efficacy

in addressing large, intricate problems compared to deter-

ministic counterparts. Nonetheless, stochastic optimization

methods encounter challenges in highly complex scenarios,

including issues related to run time, convergence towards

local optima, and reliance on the nature of search spaces.

& Sasan Harifi

s.harifi@kiau.ac.ir

Reza Eghbali

std_reza.eghbali@khu.ac.ir

Seyed Mohsen Mirhosseini

m_mirhosseini@sbu.ac.ir

1 Department of Computer Engineering, Karaj Branch, Islamic

Azad University, Karaj, Iran

123

Cluster Computing (2025) 28:596
https://doi.org/10.1007/s10586-025-05265-5(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-6788-8222
http://orcid.org/0000-0002-4436-2594
http://orcid.org/0000-0002-2990-9598
https://github.com/harifi/SD
http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-025-05265-5&domain=pdf
https://doi.org/10.1007/s10586-025-05265-5

In the real world, many problems occur in dynamic

environments, which is one of the most general types of

non-deterministic problems. Unlike static environments,

dynamic environments are always changing, and as a

result, the position and amount of optimal points also

change. Therefore, the solution methods must have the

ability to adapt to environmental changes. Although exact

methods can solve these optimization problems, these

methods need a lot of time to solve the problem. Some-

times it is enough to reach the near-optimal solution and

deal with the dynamic environment in a much shorter time.

So, approximate algorithms can be used for this. Approx-

imate algorithms can be divided into two categories:

heuristic and metaheuristic. Heuristic methods are com-

pletely dependent on the type of problem so they are

designed for some specific problems and are used for the

same specific problem. In this way, a heuristic method

specific to that problem should be designed for each

problem. Metaheuristic methods are more general and

common methods [2]. The diversity of their use in different

problems is more than heuristic methods, so it can be said

that they can be used for almost any type of problem. They

effectively search the problem space and reduce the prob-

lem-solving time. In this way, they can be used even for

very large problems.

Metaheuristics can be considered a subset of optimiza-

tion in computer science and applied mathematics. They

involve complex computing theory and algorithms. They

are also used in other fields such as artificial intelligence,

computational intelligence, and soft computing. Meta-

heuristics have been very effective and efficient in solving

complex problems in the real world, so their role in

reducing calculations and costs should not be denied [3].

Metaheuristic algorithms represent strategies crafted to

efficiently address computationally challenging optimiza-

tion problems. Researchers have drawn insights from a

variety of natural and physical processes to devise meta-

heuristics that have effectively delivered near-optimal or

optimal solutions for numerous engineering applications.

The practical significance of metaheuristic algorithms has

been widely acknowledged, particularly in recent years,

owing to their speed, high-quality solutions, and problem-

agnostic nature. However, no single metaheuristic can

universally tackle all types of optimization chal-

lenges. Consequently, numerous metaheuristics have been

introduced over time, to identify efficient metaheuristics

suitable for diverse optimization problem cate-

gories. Notably, the design of metaheuristics hinges on

mimicking the advancement or locomotion patterns of

specific phenomena or organisms. By replicating such

advancement or locomotion styles, a metaheuristic can

explore the search space of a problem akin to the habitat of

the emulated phenomenon or organism. Metaheuristics rely

on two fundamental search strategies in their quest to

identify the optimal solution for a given problem [2]. The

initial strategy involves exploration, which delves into

uncharted search regions. The subsequent strategy is

exploitation, which scrutinizes the surroundings of the

identified optimal solution. The optimal performance of

any metaheuristic hinges on striking a balance between

these two strategies. Notably, an excessive emphasis on

exploration may hinder metaheuristics from reaching the

globally optimal solution, whereas an overemphasis on

exploitation could result in being trapped in local optima

[4]. If we want to present a category of these algorithms,

we can refer to Fig. 1. Even though, we cannot consider the

classification in Fig. 1 to be unique because different

classifications have been presented by authors. However,

the classification presented in the figure seems to be more

logical. This figure shows that algorithms fall into four

categories. These four categories are Evolutionary-based,

Trajectory-based, Ancient-inspired, and Nature-inspired

[4].

Evolutionary algorithms simulate the idea of biological

evolution. In this category, a population is considered a

solution candidate population and constantly tries to

change its genetic diversity. The concept of competition

creates evolution. In this type of algorithm, a population is

randomly selected so that each individual is a solution.

Then, in successive iterations, competent individuals are

selected and try to create a new population or a new gen-

eration of offspring [5]. Their children can achieve evo-

lution and repeat the same process. Among the popular and

common algorithms that can be included in this category

are Genetic Algorithm (GA) [6], Memetic Algorithm (MA)

[7], Differential Evolution (DE) [8], Harmony Search (HS)

[9], Clonal Selection Algorithm (CSA) [10], Backtracking

Search Algorithm (BSA) [11], Stochastic Fractal Search

(SFS) [12], Across Neighborhood Search (ANS) [13], and

so on.

Trajectory-based algorithms usually try to focus on one

solution and improve it. They do this with an iterative

routine so that through these iterative routines they are

transferred from one solution space to another solution

space. This group of algorithms can be very effective in

some problems, especially problems that have a type of

permutating state. The most popular algorithms of this

category are Simulated Annealing (SA) [14], Tabu Search

(TS) [15], Variable neighborhood search (VNS) [16],

Guided Local Search (GLS) [17], and Iterative Local

Search (ILS) [18].

The inspiration from the ancient is the source of the new

inspiration that has been introduced recently. Various and

complex human-made structures in ancient times and their

creation mechanisms show a kind of optimization despite

the many limitations that existed in that era [19]. The

 596 Page 2 of 35 Cluster Computing (2025) 28:596

123

technology used in ancient civilizations was far ahead of its

time. A closer look at these technologies can reveal the

truths of optimization in ancient times. This category has

paved the way for modern optimization techniques.

Important algorithms of this category can be Giza Pyra-

mids Construction (GPC) [4], the Great Wall Construction

Algorithm (GWCA) which draws inspiration from the

historical practice of the construction of the Great Wall

[20], and Dujiangyan Irrigation System Optimization

(DISO) [21]. These ancient-inspired algorithms offer sim-

plicity, robustness, and competitive performance in solving

complex optimization problems. Also, the GPC, for

instance, utilizes a unique approach based on labor

movement dynamics, showcasing efficiency and high

convergence performance in comparison to existing

methods. By combining traditional wisdom with modern

computational concepts, these ancient metaheuristic algo-

rithms continue to contribute significantly to the opti-

mization field, offering innovative solutions to challenging

problems [19].

One of the most popular categories is the nature-based

category. Nature had billions of years to create, revise, and

edit various types of creatures to adapt to itself. Nature had

so much time that it was able to provide a solution to face

any challenge. These solutions are the solutions that

humans need to solve many of their engineering problems.

Nature has simple and understandable rules [22]. This

category is so large that it can itself include subcategories

such as Swarm-based, Bio-inspired, Human-based, Plant-

based, and Physics/chemistry-based.

Fig. 1 Classification of metaheuristic algorithms

Cluster Computing (2025) 28:596 Page 3 of 35 596

123

Swarm-based subcategory can be considered swarm

intelligence or group and collective behavior related to a

group of animals. In computing applications, swarm

intelligence is modeled on organisms or groups such as

ants, bees, fish, birds, and so on. In this type of community,

each of the agents or entities has a relatively simple

structure, but their swarm behavior seems complicated. In

other words, there is a very complex relationship between

swarm behavior and the individual behavior of a commu-

nity. Swarm behavior is not only dependent on the indi-

vidual behavior of the agents and members of the

community but also on the way of interaction between

individuals. Some of the most important and popular

algorithms in this subcategory are Particle Swarm Opti-

mization (PSO) [23], Glowworm Swarm Optimization

(GSO) [24], Intelligent Water Drops (IWD) [25], Group

Search Optimizer (GSO) [26], Hunting Search (HS) [27],

Migrating Birds Optimization (MBO) [28], Animal

Migration Optimization (AMO) [29], Radial Movement

Optimization (RMO) [30], Locust Swarm Algorithm (LSA)

[31], African Buffalo Optimization (ABO) [32], Joint

Operations Algorithm (JOA) [33], Coyote Optimization

Algorithm (COA) [34], Emperor Penguins Colony (EPC)

[35], and Special Forces Algorithm (SFA) [36].

Swarm-based algorithms are sometimes considered a

subcategory of bio-inspired algorithms. But it should also

be noted that many bio-inspired algorithms do not directly

use swarm behavior. For this reason, bio-inspired algo-

rithms can be placed in a separate subcategory. The num-

ber of algorithms in this subcategory is very large. Some of

them are Artificial Bee Colony (ABC) [37], Ant Colony

Optimization (ACO) [38], Firefly Algorithm (FA) [39], Bat

Algorithm (BA) [40], Krill Herd Algorithm (KHA) [41],

Gray Wolf Optimizer (GWO) [42], Moth-Flame Opti-

mization (MFO) [43], Ant Lion Optimizer (ALO) [44],

Crow Search Algorithm (CSA) [45], Whale Optimization

Algorithm (WHO) [46], Squirrel Search Algorithm (SSA)

[47], Fire Hawk Optimizer (FHO) [48], GOOSE algorithm

[49], Golden Jackal Optimization (GJO) [50], White Shark

Optimizer (WSO) [51], Spider Wasp Optimization (SWO)

[52], Puma Optimizer (PO) [53], Walrus Optimizer (WO)

[54], and Flying Fox Optimization (FFO) [55].

Human-based subcategory models human behaviors.

These behaviors include how humans search in the envi-

ronment and how they behave in the environment. Also,

social behaviors such as people’s cooperation with each

other can be modeled. Algorithms such as Imperialistic

Competitive Algorithm (ICA) [56], Biogeography Based

Optimization (BBO) [57], Teaching–Learning-Based

Optimization (TLBO) [58], Future Search Algorithm

(FSA) [59], Political Optimizer (PO) [60], Heap-Based

Optimizer (HBO) [61], and Squid Game Optimizer (SGO)

[62] can be placed in this subcategory.

In general, any algorithm that models the behavior of a

plant is placed in the plant-based subcategory. Plant

growth, plant seed dispersal, root growth, and so on can be

modeled. Algorithms such as Invasive Weed Optimization

(IWO) [63], Artificial Root Foraging Algorithm (ARFA)

[64], Flower Pollination Algorithm (FPA) [65], Phototropic

Optimization Algorithm (POA) [66], and Waterwheel Plant

Algorithm (WWPA) [67] are included in this subcategory.

Algorithms that model the laws of physics or chemistry

fall under the physics/chemistry-based subcategory.

Meanwhile, any kind of physical and chemical phe-

nomenon can be a source of inspiration for this subcate-

gory. Physics-based metaheuristic algorithms have gained

significant attention in recent research. These algorithms

draw inspiration from various physical phenomena to

optimize complex problems efficiently. Some of the algo-

rithms in this subcategory are Black Hole Algorithm (BH)

[68], Water Wave Optimization (WWA) [69], Lightning

Search Algorithm (LSA) [70], Electromagnetic Field

Optimization (EFO) [71], Sine Cosine Algorithm (SCA)

[72], Thermal Exchange Optimization (TEO) [73], Water

Optimization (WAO) [74], Equilibrium Optimizer (EO)

[75], Light Spectrum Optimizer (LSO) [76], Prism

Refraction Search (PRS) [77], Snow Ablation Optimizer

(SAO) [78], and Wave Search Algorithm (WSA) [79].

Certainly, the sky, the galaxy, and the universe are signs

of absolute discipline and glory in nature. Sometimes there

are unique phenomena in the sky and galaxy that we may

negligence many of them. Except for the galaxy we are in

(the Milky Way), there are thousands of other galaxies in

the universe, each containing stars. So billions of stars are

scattered around us [80]. One of the attractions that ordi-

nary people may have paid less attention to is the death of

stars. When a star dies, many physical and chemical

reactions occur [81]. Studies show that there is some kind

of optimization within these reactions. In this paper, we

have examined the death of the star from the physical point

of view and considered it as the source of inspiration. In

this way, in this paper, a novel algorithm called the Star

Death (SD) algorithm is introduced and presented. In other

words, this paper delves into a metaheuristic algorithm

inspired by star death nonlinear physical phenomenon,

which presents a solid optimization framework showcasing

remarkable exploration and exploitation capabilities for

demanding optimization tasks.

The main contribution and innovation of this paper is to

consider the physical point of view of the star death process

as an effective source of inspiration for creating a new

metaheuristic algorithm. By carefully examining this

source of inspiration, which is placed under the category of

nature-inspired, we find that the wonders of the galaxy

happen very precisely, regularly, and optimally. The main

goal of this paper is to model the physical process of star

 596 Page 4 of 35 Cluster Computing (2025) 28:596

123

death to present a new lightweight metaheuristic algorithm

with a simple mathematical formulation and at the same

time more effective compared to other physics-based

methods. In addition to having the important and efficient

capabilities of nature-inspired algorithms, the proposed

new algorithm also introduces new features. The sub-goal

of the paper is to perform various experiments to prove the

applicability and reliability of the algorithm, especially in

the specific application of dynamic load-balancing. Tradi-

tional load-balancing methods often rely on static rules or

heavy computational models, but the SD algorithm

employs an adaptable streamline in fluctuating workloads

and a nature-inspired search strategy to rapidly identify

near-optimal task allocations. In order to ensure efficient

resource utilization and prevent bottlenecks, SD dynami-

cally adjusts to changes in node performance, network

latency, or task demands.

Our motivation for formulating an innovative meta-

heuristic algorithm is derived from several pivotal factors

that address the shortcomings of current optimization

techniques and the escalating complexity of real-world

challenges. The following enumerates our primary

motivations:

1. Novel metaheuristic algorithms are inspired by a

myriad of sources. This heterogeneity not only culti-

vates creativity in the algorithmic design but also

facilitates investigating distinctive strategies that may

culminate in superior optimization outcomes.

2. Our metaheuristic approach is meticulously crafted to

enhance adaptability and resilience in addressing

various problem types, particularly those that entail

constraints. A significant emphasis in the design of our

algorithm is the capacity to sustain population diversity

and avert premature convergence.

3. There exists a persistent demand for algorithms that

exhibit enhanced performance in comparison to their

predecessors. Our objective is to augment the effi-

ciency, accuracy, and velocity of optimization pro-

cesses, which propels the development of our novel

algorithm capable of surpassing its forerunners in

specific applications.

4. The escalating utilization of metaheuristic methodolo-

gies across disciplines such as engineering, artificial

intelligence, and complex systems design compels the

necessity for perpetual innovation. Our impetus is to

develop an algorithm that not only addresses prevailing

issues but also exhibits adaptability to emergent

challenges in these swiftly advancing areas.

5. As real-world challenges become increasingly intri-

cate, conventional optimization techniques frequently

encounter difficulties in yielding satisfactory solutions.

Our algorithm, meticulously crafted to navigate

complex and high-dimensional landscapes, has

emerged as a formidable alternative owing to its

flexibility and capacity to transcend local optima.

The continuous development of innovative metaheuris-

tic algorithms is propelled by the imperative for efficient

resolutions to progressively intricate optimization chal-

lenges, the shortcomings of established methodologies, and

the myriad inspirations that catalyze pioneering strategies

within this domain.

The remainder of this paper is structured as follows:

Sect. 2 introduces star death ideology. Section 3 describes

Star Death (SD) algorithm. Section 4 includes experi-

mental results and discussion. Section 5 provides the sta-

tistical analysis. Section 6 represents high-dimensional

tests. Section 7 provides comparison results with top CEC

2020 algorithms. Section 8 presents application in solving

classical engineering problems. Section 9 proposes a

specific application for solving dynamic load-balancing.

Finally, Sect. 10 represents conclusions.

2 Star death ideology

Many astronomy enthusiasts have surely heard terms like

red giant, white dwarf, neutron star, supernova, etc. These

names, which are used to refer to a variety of stars, actually

depict different parts of a star’s life. Stars are born at some

point, and after a lifetime they eventually die. This cycle

continues. A cycle that can last between several hundred

million years and several billion years. Therefore, millions

or billions of years should be spent studying the life cycle

of stars from their birth to their death. Since humans do not

have much time and the process of changes in a star is very

slow compared to the life of a human being, scientists came

to a model called the stellar evolution [80] model by

studying different stars and examining them. The stellar

evolution, which represents the life cycle of a star, is a

process that a star goes through during its lifetime and

takes different times depending on the mass of the star.

When a star is born, the activities inside the core begin.

It is the energy released during activities inside the core

that makes the star luminous. During this period, the star

slowly feeds on its hydrogen and makes helium through

fusion in the core. The energy created from this fusion is

transferred through photons. As the hydrogen runs out, the

star’s life story enters a new phase that depends on the

star’s initial mass. A path that may lead to a massive

explosion or end with the star cooling and fading [81]. The

factor that determines the life span of the star and its fate

and life path is the initial mass of the star. From the size of

a star, its life can be roughly estimated. Smaller stars are

younger, and larger stars are nearing the end of their lives.

Cluster Computing (2025) 28:596 Page 5 of 35 596

123

Larger stars lose their energy quickly due to more activity

in the core than smaller stars and therefore have a shorter

lifespan.

As mentioned, the path of life and death of a star is

determined by its mass. There are two paths for star death,

one path is followed by high-mass stars, and the other path

by low-mass stars. Although the focus of this study is not

high-mass stars, in a brief explanation it can be said that

they eventually become a black hole or a neutron star. But

low-mass stars include a group of stars whose mass is less

than eight times the mass of the Sun. This category of stars

includes 95% of all the stars in the universe, and the sun is

one of them [82]. Figure 2 shows the life cycle of low-mass

stars.

After the low-mass star has burned nearly all of its

hydrogen, its core begins to contract and heat up, causing

the hydrogen to burn even faster. This created extra energy

radiates outward and causes the outer layers of the star to

move away from its core. At the same time as the outer

layers of the star expand, it cools and as a result, its color

becomes redder and redder and the star enters the Red

Giant stage [83].

In the red giant stage, the star’s core has become hot

enough to start burning helium. A type of nuclear fusion

process in which heavier helium cores are joined together

to form larger cores such as carbon and then oxygen. The

burning of helium continues, but eventually, the helium in

the core runs out, and after most of the core has been

converted into carbon and oxygen atoms, the star has no

more fuel to burn. As the last helium particles are burned,

the outer layers of the star are separated and spread back

into interstellar space. The ejected shell of the star forms a

mass called the Planetary Nebula [84].

After the planetary nebula disperses and separates into

space, a small, very hot, bare core of the star remains. A

mass called the White Dwarf [85]. White dwarfs are the

last stage in the life cycle of low-mass stars. White dwarfs

have low-energy light photons and also have Earth-sized

volumes. But they are very dense and their mass is about

the mass of the sun. When the star turns into a white dwarf,

the end of the star’s life comes. Some scientists believe that

the white dwarf will eventually lose its light and become a

Black Dwarf, which is practically invisible in space [82].

The star death ideology is the observation and thinking

about physical events and the star death moment, where

photons are optimally able to create, carry, or emit energy,

and as a result, change the luminosity level of the star.

3 Star Death (SD) algorithm

In a star, all the energy in its center (its core) is made by a

process called nuclear fusion. As a result, the energy in the

star is released in the form of heat and light. The energy of

this heat and light is transferred by photons. A photon, free

in a vacuum, is described as a self-sustaining, spiraling

wave packet of quantized spin angular momentum, moving

at the speed of light [86]. The reason why a star’s lumi-

nance is this process of moving photons.

In the star death algorithm, it is assumed that the pho-

tons are scattered in the body of the red giant. Among these

photons, the best photons are the bright photons that are

moving on the surface of the red giant, called elite photons.

Also, some photons are placed in the center and near the

center of the red giant, which are called central photons.

The main feature of elite photons is their luminosity and

emitting power. The main feature of central photons is their

density and nuclear fusion. As we move toward the center

of the red giant, the density of photons increases, and as we

move toward the periphery of the red giant, the brightness

of the photons becomes more apparent. The elite photon

and the central photon show the search radius or the radius

of the red giant. Over time, the photons are concentrated

towards the center and the radius of the red giant gradually

decreases until the red giant eventually becomes a white

dwarf.

In this algorithm, photons are scattered first. Then, after

determining the elite photon, the central photon, the posi-

tion of these two photons is determined based on the

position of other photons in successive iterations. To move

the elite photon, first, the luminosity rate is determined

through the following equation,

Lrate ¼ 2:0 � a� rand ð1Þ

where a is the absorption rate, which is a determinable

parameter. This parameter has a direct impact on the pro-

cess of turning a red giant into a white dwarf and controls

the amount of exploration and exploitation. Now that the

luminosity rate is obtained, the luminosity level is calcu-

lated. We have,

L ¼ Lrate � E � p ð2Þ

where E is the position of the elite photon and p is the

position of the photon. Then the emitter rate is calculated,

Fig. 2 The life cycle of low-mass stars

 596 Page 6 of 35 Cluster Computing (2025) 28:596

123

Emrate ¼ a� rand � 1:0 ð3Þ

where a is the absorption rate parameter. After determining

the photon emitter rate, the emitter level is calculated

through the following equation,

Em ¼ A� Emrate � L ð4Þ

where A is an adaptive parameter and is obtained through

the equation e
�2� it

Maxit

� �2

. Finally, the new position of the

elite photon is obtained through the following relationship,

NewE ¼ E � A� Em ð5Þ

The same procedure happens with some changes for the

displacement of the central photon. To move the central

photon, the density rate must be obtained first. Its equation

is very similar to the luminosity rate equation, so we have,

Drate ¼ 2:0 � a� rand ð6Þ

where a is the absorption rate and the rand function is

called again to generate a new random number compared to

the random number in Eq. (1).

The outward force produced by the fusion process is

balanced by the inward gravitational pull of the star. It is

this balance between the two that prevents the star from

collapsing or expanding. In fact, these photons are con-

stantly approaching each other and causing the density of

the star to increase. When the density gets too high,

explosions occur and cause the photons to move slightly

apart. In this way, the density is slightly reduced. The

photon density is calculated based on the density rate of

each photon, the central photon and the position of the

surrounding photons. Therefore, to calculate the photon

density, we have,

D ¼ Drate � C � p ð7Þ

where C is the position of the central photon and p is the

position of the investigated photon. Now we need to

determine the fusion rate, we have,

Frate ¼ a� rand � 1:0 ð8Þ

where a is the absorption rate and in general this equation

is like the emitter rate equation namely Eq. (3). This pro-

cess is constantly repeated to maintain the balance of the

star. Figure 3 shows the nuclear fusion process which is the

source of inspiration for this algorithm. By definition,

fusion occurs when two atoms are forced to form a heavier

atom. This releases a lot of energy. It should be taken into

account that fusion occurs only at extreme density, namely

in the center of the star. In Fig. 3, for example, the fusion

reaction of Deuterium (D) and Tritium (T) produces a

Helium nucleus (or alpha particle) and a high-energy

neutron. In this process, there is residual energy, which is

the luminosity of the star due to the presence of this energy.

In the SD algorithm, nuclear fusion is calculated through

the following equation for the central photon,

F ¼ A� Frate � D ð9Þ

where A is the adaptive parameter that was previously used

in Eq. (4). Finally, the new position of the central photon is

obtained through the following relationship,

NewC ¼ C � A� F ð10Þ

Now, with the obtained data, it is possible to obtain the

position of the photon during nuclear fusion. In this way,

the position of the photon after fusion and after determin-

ing the new position of the elite photon and the central

photon will be obtained by averaging the two positions of

the elite photon and the central photon. This equation is,

p ¼ NewE þ NewC

2
ð11Þ

Figure 4 shows a subjective perception of photon

movements. When photons spread around the nucleus, the

elite and central photons are identified. The difference

between the elite photon and the central photon shows the

search radius or the radius of the red giant. Over time, the

photons are compressed towards the center and the radius

of the red giant gradually decreases until the red giant

eventually becomes a white dwarf. This happens through

continuous averaging between the central photon and the

elite photon, which determines the position of the other

photons.

The above conditions are performed for all photons in

all their dimensions so that finally the vector p! is prepared

for the next iteration. In a dying star, this process continues

until all the energy of the star’s luminosity is lost, thus the

star gradually turns from a red giant into a white dwarf. For

the proposed algorithm we considered all star interactions

Fig. 3 Example of nuclear fusion reactions

Cluster Computing (2025) 28:596 Page 7 of 35 596

123

from a physical point of view. If we were to discuss the

matter from a chemical point of view, we should have

added pressure equations and equilibrium composition

between hydrogen and helium to the discussion, and this

would have complicated the algorithm and its calculations.

Therefore, the investigation of the star’s death from a

chemical point of view has not been done. Figure 5 shows

the pseudo-code of the Star Death (SD) algorithm. Also,

Fig. 6 shows the flowchart of the proposed algorithm.

4 Experimental results and discussion

In this section, the experiments performed to evaluate the

performance of the proposed SD algorithm are described in

detail, and also the discussions are presented about the

obtained results. Indeed, we first provide details of the

benchmark functions used to test the algorithms. Then, we

Fig. 4 Subjective perception of photon movements

Fig. 5 Pseudo-code of the Star Death (SD) algorithm

Fig. 6 Flowchart of the SD algorithm

 596 Page 8 of 35 Cluster Computing (2025) 28:596

123

explain the parameter settings and conditions for applying

the algorithm to the test functions. After that, we present

the test results and explain the results. Finally, we analyze

the results and identify the characteristics of the SD

algorithm.

For performance evaluation, 45 standard benchmark test

functions have been used [87]. In applied mathematics,

these functions are used to evaluate the properties of

optimization algorithms. These functions are designed to

check different conditions and situations of algorithms. The

purpose of using these functions is to check the perfor-

mance of the algorithm in terms of accuracy, efficiency,

and convergence rate in facing different conditions and

situations. In this paper, unimodal and multimodal func-

tions are considered. Unimodal functions have two types.

These two types are unimodal benchmark functions with

predefined and fixed dimension values and unimodal

benchmark functions with d-dimension values. Tables 1

and 2 lists these two categories of unimodal functions.

Multimodal functions are also two types. Multimodal

benchmark functions with predefined and fixed dimension

values and multimodal benchmark functions with d-di-

mension values are these two types. Tables 3 and 4 show

these two types. It has been tried to be as diverse as pos-

sible the benchmark functions so that they can well chal-

lenge the proposed algorithm and competing algorithms.

In order to validate and evaluate the performance, the

proposed algorithm has been compared with 10 popular

algorithms, all of which were implemented by us. These

algorithms in alphabetical order are Biogeography Based

Optimization (BBO) [57], Differential Evolution (DE) [8],

Genetic Algorithm (GA) [6], Golden Jackal Optimization

(GJO) [50], Giza Pyramids Construction (GPC) [4], Grey

Wolf Optimizer (GWO) [42], Invasive Weed Optimization

(IWO) [63], Particle Swarm Optimization (PSO) [23],

Teaching–Learning-Based Optimization (TLBO) [58], and

White Shark Optimizer (WSO) [51].

Experiments for each algorithm have been conducted

under completely fair conditions. Here are some settings

for the experiments. The initial population is considered to

be 20 for all algorithms. The number of decision variables

that determine the dimensions of the problem is set to 30 by

default for d-dimensional functions. Each algorithm for

each benchmark function is run 30 times independently,

then the mean and standard deviation of 30 independent

runs are recorded. The parameters related to the algorithms

are adjusted through trial and test so that they are in their

best state to be applied to the benchmark functions. The

type of crossover used in the DE algorithm is binomial

crossover. On the other hand, the GA algorithm uses

arithmetic crossover. The values of all parameters for each

algorithm are shown in Table 5. The criteria for stopping

algorithms is the number of function evaluations (NFE).

The computational complexity of all competing algorithms

is similar to each other so that with the number of popu-

lations considered and also the number of iterations that is

500, the number of calls of the benchmark function is equal

to 10,000 NFEs.

Tables 6 and 7 show the results obtained from applying

the proposed algorithm and competing algorithms on the

benchmark test functions. Bohachevsky (f 1) and Booth (f 2)

functions are both convex, unimodal functions. These two

functions are also defined for two-dimensional space. For

these two functions, the SD algorithm performs best. GA

algorithm recorded the worst performance. For the Easom

(f 3) function, the SD algorithm also performs well. This

function is a modal ion function defined for two-dimen-

sional space. However, along with SD, other algorithms

such as GPC, PSO, and WSO algorithms provided very

good performance. The Gramacy & Lee function (f 4) is a

simple, and one-dimensional function. This function is also

unimodal. For this function, the GPC, TLBO, WSO, and

SD performed best.

Matyas function (f 5) is an almost simple, convex, uni-

modal, differentiable, and non-separable function. This

function is defined for two-dimensional space. For this

function, only the BBO, GA, and IWO algorithms per-

formed poorly and the rest of the algorithms achieved the

desired solution. The Power Sum function (f 6) is unimodal.

This function is defined for four-dimensional space. For

this function, the best performance is only for the SD

algorithm. Also, Schaffer N.2 (f 7) and Schaffer N.4 (f 8)

functions are non-convex, unimodal, differentiable, and

non-separable functions. These two functions namely

Schaffer N.2 and Schaffer N.4 are defined for two-di-

mensional space. Although the SD algorithm performs well

for these two functions, the rest of the algorithms also

perform well. The Griewank function (f 9) however covers

the d-dimensional space. For this function, the SD algo-

rithm failed to record good performance. For this function,

DE, GJO, GPC, GWO, and TLBO algorithms had excellent

performance. Also, for this function, the solutions obtained

for the IWO algorithm are in the infeasible range.

The three Hyper-Ellipsoid (f 10) Perm (f 11) and

Zakharov (f 15) functions are also unimodal. These func-

tions are also defined for d-dimensional space. The best

solutions for Hyper-Ellipsoid and Perm are related to the

proposed SD algorithm. For these two functions, some

algorithms such as IWO and WSO were in the infeasible

range. For the Zakharov function, the best solution is

related to the SD algorithm, and the GWO is in the

infeasible range. The rest of the algorithms gave typical

solutions. Functions Sphere (f 12), Sum-Powers (f 13), and

Sum-Squares (f 14) are almost simple functions. These

functions are also convex, and unimodal. For these three

functions, the best performance is related to the SD

Cluster Computing (2025) 28:596 Page 9 of 35 596

123

algorithm. Although GPC and TLBO algorithms also

showed acceptable performance for these three functions.

Beale functions (f 16), Branin function (f 17), and Bukin

function (f 18) are all multimodal and are defined for two-

dimensional space. For these three functions, the SD

algorithm performs very well. However, IWO and GWO

showed poor performances.

Camel Three-Hump function (f 20) is a non-convex,

multimodal, differentiable, and non-separable function. For

this function, all algorithms were able to reach the desired

solution. For the Colville function (f 21), which is defined

for the four-dimensional space, the best solution is related

to the SD and DE algorithms. Camel Six-Hump (f 19),

Cross-In-Tray (f 22), Forrester (f 26) and Michalewicz (f 34)

functions are non-convex and non-separable as well as

multimodal functions. All algorithms provide suitable so-

lutions for these functions. Although the best solutions are

provided by the SD algorithm.

Other functions, such as De Jong (f 23), and Drop-Wave

(f 24), are all multimodal and non-convex. For the De Jong

function, the best performance is related to the SD algo-

rithm. However, in the case of the Drop-Wave function,

only BBO, GA, PSO, and TLBO algorithms could not

reach the desired solutions. The Eggholder function (f 25) is

a hard function to optimize. The reason is the large num-

bers it requires for local optima. For this difficult function,

the best solution is the SD algorithm. After SD, the GPC

algorithm provided the best solution. The rest of the

algorithms in this function have a big difference to the

desired solution. The three functions Hartmann-3D (f 27),

Hartmann-4D (f 28), and Hartmann-6D (f 29) are multimodal

and are defined for three, four and six-dimensional space,

respectively. For these three functions, the best solution is

related to the SD algorithm. However, in the case of the

Hartmann-3D function, in addition to SD, DE and WSO

algorithms also provided favorable solutions.

Table 1 Unimodal benchmark functions with predefined and fixed dimension value

Function Equation Range Dim f x�ð Þ

Bohachevsky f 1 xð Þ ¼ x2
1 þ 2x2

2 � 0:3cos 3px1ð Þ � 0:4cos 4px2ð Þ þ 0:7 �100; 100½ � 2 0

Booth f 2 xð Þ ¼ x1 þ 2x2 þ 7ð Þ2 þ 2x1 þ x2 þ 5ð Þ2 �10; 10½ � 2 0

Easom f 3 xð Þ ¼ �cos x1ð Þcosx2expð� x1 � pð Þ2 � ðx2 � pÞ2Þ �100; 100½ � 2 - 1

Gramacy & Lee f 4 xð Þ ¼ sin 10pxð Þ
2x þ x� 1ð Þ4 ½0:5; 2:5� 1 - 0.8690

Matyas f 5 xð Þ ¼ 0:26 x2
1 þ x2

2

� �
� 0:48x1x2 �10; 10½ � 2 0

Power Sum
f 6 xð Þ ¼

Pd
i¼1

Pd
j¼1 x

i
j

� �
� bi

h i2

where b ¼
8,18,44,114ð Þ

½0; 4� 4 0

Schaffer N.2
f 7 xð Þ ¼ 0:5 þ sin

2
x2

1
�x2

2ð Þ�0:5

1þ0:001 x2
1
þx2

2ð Þ½ �2
�100; 100½ � 2 0

Schaffer N.4
f 8 xð Þ ¼ 0:5 þ cos sin x2

1
�x2

2j jð Þð Þ�0:5

1þ0:001 x2
1
þx2

2ð Þ½ �2
�100; 100½ � 2 0.2925

Table 2 Unimodal benchmark

functions with d-dimension

value

Function Equation Range Dim f x�ð Þ

Griewank f 9 xð Þ ¼
Pd

i¼1

x2
i

4000
�
Qd

i¼1 cos xiffi
i

p
� �

þ 1 �600; 600½ � d 0

Hyper-

Ellipsoid
f 10 xð Þ ¼

Pd
i¼1

Pi
j¼1x

2
j

�65:536; 65:536½ � d 0

Perm
f 11 xð Þ ¼

Pd
i¼1

Pd
j¼1 jþ bð Þ xij � 1

ji

� �� �2 ½d; d� d 0

Sphere f 12 xð Þ ¼
Pd

i¼1 x
2
i

�5:12; 5:12½ � d 0

Sum-Powers f 13 xð Þ ¼
Pd

i¼1 xij jiþ1 �1; 1½ � d 0

Sum-

Squares
f 14 xð Þ ¼

Pd
i¼1 ix

2
i

�10; 10½ � d 0

Zakharov
f 15 xð Þ ¼

Pd
i¼1 x

2
i þ

Pd
i¼1 0:5ixi

� �2

þ
Pd

i¼1 0:5ixi

� �4 �5; 10½ � d 0

 596 Page 10 of 35 Cluster Computing (2025) 28:596

123

Ta
bl
e
3

M
u

lt
im

o
d

al
b

en
ch

m
ar

k
fu

n
ct

io
n

s
w

it
h

p
re

d
efi

n
ed

an
d

fi
x

ed
d

im
en

si
o

n
v

al
u

e

F
u

n
ct

io
n

E
q

u
at

io
n

R
an

g
e

D
im

f
x� ð
Þ

B
ea

le
f 1

6
xð
Þ¼

1
:5
�
x 1

þ
x 1
x 2

ð
Þ2

þ
2
:2

5
�
x 1

þ
x 1
x2 2

�
� 2

þ
2
:6

2
5
�
x 1

þ
x 1
x3 2

�
� 2

�
4
:5
;4
:5

½
�

2
0

B
ra

n
in

f 1
7
xð
Þ¼

x 2
�

5
:1

4
p

2
x2 1

þ
5 p
x 1

�
6

�
� 2

þ
1

0
1
�

1 8
p

�
� co

sx
1
þ

1
0

½�
5

,1
0
�

2
0

.3
9

7
8

B
u

k
in

f 1
8
xð
Þ¼

1
0

0
ffiffiffiffiffi

ffiffiffiffiffi
ffiffiffiffiffi

ffiffiffiffiffi
ffiffiffiffiffi
ffi

x 2
�

0
:0

1
x2 1

� �
� �

q
þ

0
:0

1
x 1

þ
1

0
j

j
�

3
,3

½
�

2
0

C
am

el
S

ix
-H

u
m

p
f 1

9
xð
Þ¼

4
�

2
:1
x2 1

þ
x4 1 3

�
� x2 1

þ
x 1
x 2

þ
�

4
þ

4
x2 2

�
� x2 2

�
3

,3
½

�
2

-
1

.0
3

1
6

C
am

el
T

h
re

e-
H

u
m

p
f 2

0
xð
Þ¼

2
x2 1

�
1
:0

5
x4 1

þ
x6 1 6
þ
x 1
x 2

þ
x2 2

�
5

,5
½

�
2

0

C
o

lv
il

le
f 2

1
xð
Þ¼

1
0

0
x2 1

�
x 2

�
� 2

þ
x 1

�
1

ð
Þ2

þ
x 3

�
1

ð
Þ2

þ
9

0
x2 3

�
x 4

�
� 2

þ
1

0
:1

x 2
�

1
ð

Þ2
þ

x 4
�

1
ð

Þ2
�

� þ
1

9
:8

x 2
�

1
ð

Þ
x 4

�
1

ð
Þ

½�
1

0
,1

0
�

4
0

C
ro

ss
-I

n
-T

ra
y

f 2
2
xð
Þ¼

�
0
:0

0
0

1
si

n
x 1ð
Þs

in
x 2ð
Þe

x
p

1
0

0
�

ffiffiffiffiffi
ffiffiffiffi

x2 1
þ
x2 2

p
p

� � � �
� � � �

�
	

� � � �
� � � �þ

1

�
	 0

:1
�

1
0
;1

0
½

�
2

-
2

.0
6

2
6

D
e

Jo
n

g
f 2

3
xð
Þ¼

0
:0

0
2
þ
P

2
5
i¼

1
1

iþ
x 1
�
a

1
i

ð
Þ6
þ

x 2
�
a

2
i

ð
Þ6

�
� �

1
�

6
5

.5
3

6
,6

5
.5

3
6

½
�

2
0

D
ro

p
-w

av
e

f 2
4
xð
Þ¼

�
1
þ

co
s

1
2

ffiffiffiffiffi
ffiffiffiffi

x2 1
þ
x2 2

p
ð

Þ
0
:5

x2 1
þ
x2 2

ð
Þþ

2

�
5
:1

2
;5
:1

2
½

�
2

-
1

E
g

g
h

o
ld

er
f 2

5
xð
Þ¼

�
x 2

þ
4

7
ð

Þs
in

ffiffiffiffiffi
ffiffiffiffiffi

ffiffiffiffiffi
ffiffiffiffiffi

ffiffiffiffiffi
ffiffi

x 2
þ

x 1 2
þ

4
7

� �
� �

q �
� �

x 1
si

n
ffiffiffiffiffi

ffiffiffiffiffi
ffiffiffiffiffi

ffiffiffiffiffi
ffiffiffiffiffi

ffiffiffiffiffi
ffi

x 1
�

x 2
þ

4
7

ð
Þ

j
j

p �
�

�
5

1
2
;5

1
2

½
�

2
-

9
5

9
.6

4
0

7

F
o

rr
es

te
r

f 2
6
xð
Þ¼

6
x
�

2
ð

Þ2
si

n
1

2
x
�

4
ð

Þ
½0

,1
�

1
-

6
.0

2
0

7

H
ar

tm
an

n
3

D
f 2

7
xð
Þ¼

�
P

4 i¼
1
a i

ex
p

�
P

3 j¼
1
a
ij
x j
�
p
ij

�
� 2

�
�

w
h

er
e
a;
a
;p

ar
e

fr
o

m
[8

7
]

½0
,1
�

3
-

3
.8

6
2

8

H
ar

tm
an

n
4

D
f 2

8
xð
Þ¼

1
0
:8

3
9

1
:1
�
P

4 i¼
1
a i

ex
p

�
P

3 j¼
1
a
ij
x j
�
p
ij

�
� 2

�
�

h
i

w
h

er
e
a;
a
;p

ar
e

fr
o

m
[8

7
]

½0
,1
�

4
-

3
.1

3
4

5

H
ar

tm
an

n
6

D
f 2

9
xð
Þ¼

�
P

4 i¼
1
a i

ex
p

�
P

6 j¼
1
a
ij
x j
�
p
ij

�
� 2

�
�

w
h

er
e
a;
a
;p

ar
e

fr
o

m
[8

7
]

½0
,1
�

6
-

3
.3

2
2

3

H
o

ld
er

-T
ab

le
f 3

0
xð
Þ¼

�
si

n
x 1ð
Þc

o
sð
x 2
Þe

x
p

1
�

ffiffiffiffiffi
ffiffiffiffi

x2 1
þ
x2 2

p
p

� � � �
� � � �

�
	

� � � �
� � � �

�
1

0
,1

0
½

�
2

-
1

9
.2

0
8

5

L
an

g
er

m
an

n
f 3

1
xð
Þ¼

P
5 i¼

1
c i

ex
p

�
1 p

P
d j¼

1
x j
�
a
ij

�
� 2

�
� co

s
p
P

d j¼
1

x j
�
a
ij

�
� 2

�
�

w
h

er
e
c;
a

ar
e

fr
o

m
[8

7
]

½0
,1

0
�

2
-

1
.4

L
ev

y
N

.1
3

f 3
2
xð
Þ¼

si
n

2
3
p
x 1

ð
Þþ

x 1
�

1
ð

Þ2
1
þ

si
n

2
3
px

2
ð

Þ

� þ
x 2

�
1

ð
Þ2

1
þ

si
n

2
2
px

2
ð

Þ

�
�

1
0

,1
0

½
�

2
0

M
cC

o
rm

ic
k

f 3
3
xð
Þ¼

si
n
x 1

þ
x 2

ð
Þþ

x 1
�
x 2

ð
Þ2

�
1
:5
x 1

þ
2
:5
x 2

þ
1

½�
3

,4
�

2
-

1
.9

1
3

3

M
ic

h
al

ew
ic

z
f 3

4
xð
Þ¼

�
P

d i¼
1

si
n
ðx

iÞs
in

2
m

ix
2 i p�
�

0
;p

½
�

2
-

1
.8

0
1

3

S
h

ek
el

f 3
5
xð
Þ¼

�
P

1
0
i¼

1

P
4 j¼

1
x j
�
c j
i

�
� 2

þ
b i

�
� �

1

w
h

er
e
b;
c

ar
e

fr
o

m
[8

7
]

½0
,1

0
�

4
-

1
0

.5
3

6
4

S
h

u
b

er
t

f 3
6
xð
Þ¼

ðP
5 i¼

1
ic

o
sð

i
þ

1
ð

Þx
1
þ
iÞÞ

ðP
5 i¼

1
ic

o
sð

i
þ

1
ð

Þx
2
þ
iÞÞ

�
1

0
,1

0
½

�
2

-
1

8
6

.7
3

0
9

T
ri

d
f 3

7
xð
Þ¼

P
d i¼

1
x i
�

1
ð

Þ2
�
P

d i¼
2
x i
x i
�

1
½d

2
;d

2
�

6
-

5
0

Cluster Computing (2025) 28:596 Page 11 of 35 596

123

The Holder-Table function (f 30) is non-convex, non-

differentiable and non-separable. Only DE and GWO

algorithms did not provide good solutions for this function.

Also, the SD algorithm has provided the best solution

among the algorithms. Also, the Langermann function

(f 31), which is a function defined for two-dimensional

space. The best solution is provided by the BBO algorithm.

For this function, the SD algorithm has provided the sec-

ond-best solution. Levy N.13 (f 32), and Shubert (f 36)

functions are non-convex, multimodal, differentiable, and

non-separable. Also, these two functions are considered

complex functions. For the Levy N.13 function, the best

performance is related to the SD algorithm, and the rest of

the algorithms could not have an acceptable performance.

Also, for the Shubert function, the SD algorithm together

with the PSO algorithm recorded the best performance.

Ackley (f 38) and Levy (f 40) functions are also non-

convex, multimodal, differentiable, and non-separable

functions. These two functions are also complex. For the

Ackley function, the best performance is related to the SD

algorithm, and the worst is related to IWO. In the case of

Levy, the DE algorithm has shown the best performance.

The three functions of Dixon Price (f 39), Rastrigin (f 42),

and Rosenbrock (f 43) are very hard and differentiable

functions that are defined for the n-dimensional space. For

these three functions, the SD algorithm provides optimal

solutions. Meanwhile, for the Rosenbrock function, the

WSO algorithm is in the infeasible range. The Powell

function (f 41) is non-convex and multimodal and is defined

for d-dimensional space. SD and GPC provided the best

performance for this function, respectively. The Schwefel

function (f 44) is a function for the d-dimensional space.

This function has a large search space and therefore creates

a great challenge for the algorithm. The best solution for

this function is the SD algorithm and then the GPC algo-

rithm. For the remaining functions namely the Shekel

function (f 35), Trid function (f 36), and Styblinski Tang

(f 45), the performance of the proposed algorithm is gen-

erally evaluated well.

In total, the results of the benchmark functions show

that the proposed algorithm is successful. The results show

that the SD algorithm could not record the best perfor-

mance in only three of the 45 benchmark functions.

To show how to search and converge, we randomly

selected eight benchmark test functions and recorded the

perspective view of the population in iterations 1, 5, and

10. This view is shown in Fig. 7.

To compare the convergence of the proposed algorithm

compared to other competing algorithms, we randomly

selected 12 benchmark test functions and drew the con-

vergence curve of the algorithms. Figures 8 and 9 show

this comparison.

Ta
bl
e
4

M
u

lt
im

o
d

al
b

en
ch

m
ar

k
fu

n
ct

io
n

s
w

it
h

d
-d

im
en

si
o

n
v

al
u

e

F
u

n
ct

io
n

E
q

u
at

io
n

R
an

g
e

D
im

f
x� ð
Þ

A
ck

le
y

f 3
8
xð
Þ¼

�
2

0
ex

p
�

0
:2

ffiffiffiffiffi
ffiffiffiffiffi

ffiffiffiffiffi
ffiffiffiffi

1 d

P
d i¼

1
x2 i

q
�

	
�

ex
p

1 d

P
d i¼

1
co

s
2
px

i
ð

Þ
�

� þ
2

0
þ

ex
p

�
3

2
:7

6
8
;3

2
:7

6
8

½
�

d
0

D
ix

o
n

P
ri

ce
f 3

9
xð
Þ¼

x 1
�

1
ð

Þ2
þ
P

d i¼
2
i

2
x2 i

�
x i
�

1

�
� 2

�
1

0
;1

0
½

�
d

0

L
ev

y
f 4

0
xð
Þ¼

si
n

2
px

1
ð

Þþ
P

d
�

1
i¼

1
x

i
�

1
ð

Þ2
1
þ

1
0

si
n

2
px

i
þ

1
ð

Þ

� þ
x

d
�

1
ð

Þ2
1
þ

si
n

2
2
px

d
ð

Þ

�
�

1
0

,1
0

½
�

d
0

P
o

w
el

l
f 4

1
xð
Þ¼

P
d 4 i¼

1
x 4

i�
3
þ

1
0
x 4

i�
2

ð
Þ2

þ
5
x 4

i�
1
þ
x 4

i
ð

Þ2
þ

x 4
i�

2
þ

2
x 4

i�
1

ð
Þ4

þ
1

0
x 4

i�
3
þ
x 4

i
ð

Þ4
h

i
�

4
,5

½
�

d
0

R
as

tr
ig

in
f 4

2
xð
Þ¼

1
0
d
þ
P

d i¼
1
x2 i

�
1

0
co

s
2
px

i
ð

Þ

�
�

5
:1

2
;5
:1

2
½

�
d

0

R
o

se
n

b
ro

ck
f 4

3
xð
Þ¼

P
d
�

1
i¼

1
1

0
0
x i
þ

1
�
x2 i

�
� 2

þ
x i
�

1
ð

Þ2
h

i
�

5
;1

0
½

�
d

0

S
ch

w
ef

el
f 4

4
xð
Þ¼

4
1

8
:9

8
2

9
d
�
P

d i¼
1
x i

si
n

ffiffiffiffiffi
ffi

x ij
j

p �
�

½�
5

0
0

,5
0

0
�

d
0

S
ty

b
li

n
sk

i
T

an
g

f 4
5
xð
Þ¼

1 2

P
d i¼

1
x4 i

�
1

6
x2 i

þ
5
x i

�
�

½�
5

,5
�

d
-

3
9

.1
6

5
9

d

 596 Page 12 of 35 Cluster Computing (2025) 28:596

123

To calculate the computational complexity of the SD

algorithm, it is necessary to calculate the computational

complexity and space complexity. In the SD algorithm,

there is a main loop that counts the number of iterations.

This loop itself contains two separate loops. A loop

examines all members of the population and identifies the

elite photon and the central photon. The other loop checks

all the members of the population again and according to

the decision variables, obtains the new position relative to

the placement location of the elite photon and the central

photon, and finally calculates the position of the new

photon based on the mean of these two photons. On the

other hand, to define the group of photons, we need

Oðn�MaxitÞ, where n is the number of photons or mem-

bers of the population, and Maxit is the number of iterations

of the algorithm. Thus, if we assume that dim is the number

of decision variables and the algorithm stops at Maxit, the

computational complexity is equal to,

O n�Maxitð Þ þ Oðn�Maxit � dimÞ. Space complexity is

the amount of space required at any given moment. This

algorithm is memory-less, as a result, the space complexity

of the SD algorithm is equal to OðdimÞ where dim is the

number of decision variables or problem dimensions.

Lightweight metaheuristic algorithms have been devised

in diverse fields to tackle issues related to computational

complexity. Given the constraints of the operational envi-

ronment for end-users, there is a pressing need for efficient

lightweight optimization algorithms to assist in minimizing

unnecessary energy usage and cost. The SD algorithm

presents a harmonious combination of optimization effec-

tiveness and computational expenditure across a range of

domains. The varied applications underscore the impor-

tance of lightweight metaheuristic algorithms in dealing

with limitations in resources while upholding performance

standards. In comparison to existing approaches, the SD

algorithm introduced displays quicker convergence and

lower memory demands. The memory requirement of the

proposed technique is notably smaller in contrast to many

conventional background subtraction methods. The SD

algorithm illustrates progress in attaining optimal solutions

with reduced computational load in diverse optimization

scenarios. Furthermore, within the domain of the Internet

of Things (IoT), researchers have delved into the utilization

of lightweight metaheuristic algorithms to deploy them on

resource-constrained IoT devices, aiming to optimize

implementation cost and performance. Given the inherent

limitations in processing power and memory of embedded

smart devices, the development of lightweight algorithms

that demand minimal memory for storage is of utmost

significance. The space complexity of the SD algorithm is

OðdimÞ and is relatively small when compared to the

memory requirements of other algorithms.

The SD algorithm shows exceptional efficiency in

maintaining diversity in the population and avoiding falling

into the local optimal trap. This algorithm is also very

flexible, effective, and stable. This algorithm has a very

good capacity to be used in various problems. The strategy

of photons in this algorithm is an interesting feature. To

effectively facilitate the emergence of photons from a local

Table 5 The values used to adjust the parameters of the algorithms

Algorithm Parameters Values

BBO Population size 20

Keep rate 0.2

Number of kept habitats 4

Number of new habitats 16

Immigration rates [0,1]

DE Population size 20

Lower bound of scaling factor 0.2

Upper bound of scaling factor 0.8

Crossover probability 0.2

GA Population size 20

Crossover percentage 0.7

Mutation percentage 0.3

GJO Search agents 20

C1 1.5

GPC Population size 20

Angle of ramp 10

Initial velocity [0,1]

Minimum friction 1

Maximum friction 5

Substitution probability 0.9

GWO Search agents 20

Initial convergence factor 2

IWO Population size 20

Maximum population size 15

Minimum number of seeds 0

Maximum number of seeds 5

Variance reduction exponent 2

Initial standard deviation 0.5

Final standard deviation 0.001

PSO Swarm size 20

Inertia weight 1

Inertia weight damping ratio 0.98

Personal learning coefficient 2

Global learning coefficient 2

TLBO Population size 20

WSO Population size 20

Maximum wavy motion 0.75

Minimum wavy motion 0.07

SD Swarm size 20

Absorption rate 1

Cluster Computing (2025) 28:596 Page 13 of 35 596

123

optimum, during each iteration, the best photon within the

current population is initially identified. Subsequently, an

elite strategy is implemented on this selected photon, and

the exploration range of this photon is dynamically adap-

ted based on the quest for an improved solution. Conse-

quently, a cluster of elite photons is produced surrounding

this exploration range. Ultimately, if the freshly generated

elite photons surpass the best photon within the current

population, the latter is substituted with the newly created

elite photon.

Another feature of the algorithm is the use of the center-

based sampling method. The utilization of the center-based

sampling method in the context of the SD algorithm

applies to various phases of the optimization process. It is

worth noting that this technique highlights the tendency for

the center point within a search space to possess a higher

likelihood of proximity to an undisclosed solution, par-

ticularly evident as the dimensionality escalates. Conse-

quently, this principle serves to enhance the efficacy of the

optimizer in attaining superior solutions. Empirical find-

ings substantiate the pivotal role played by center-based

sampling in augmenting the rate of convergence for opti-

mization and search algorithms addressing problems of

heightened dimensionality.

A significant metric in the realm of algorithmic com-

plexity is the number of parameters utilized in an algo-

rithm. Metaheuristics that make use of a large number of

parameters demonstrate a higher level of complexity in

comparison to techniques that employ a minimal amount

of parameters, influenced by multiple factors. The SD

algorithm performs the adjustment or comprehension of

these parameters via adaptive parameterization. Conse-

quently, this serves as a proactive strategy against intricate

parameters, to enhance the clarity and comprehension of

the parameter space.

Parameter interactions in the SD Algorithm serve to

avert the presence of numerous locally optimal solutions

within the parameter space concerning the quality of the

solution. From a practical perspective on optimization, the

notion of parameter interaction suggests that the effec-

tiveness of optimizing parameters individually is enhanced

by the influence of the emitter effect on luminosity and the

fusion effect on density. While there is a certain degree of

parameter interaction in algorithms that possess a limited

number of parameters, it is noteworthy that this interaction

intensifies significantly as the number of parameters

involved grows. One of these parameter interactions in the

SD algorithm is to adjust the amount of exploration and

exploitation. In some problems, it is necessary to carry out

more exploration to perform better exploitation. This is

especially necessary for high-dimensional and difficult

problems. In the SD algorithm, the absorption rate

parameter does this. We present a simple example inTa
bl
e
6

R
es

u
lt

s
o

b
ta

in
ed

fr
o

m
ap

p
ly

in
g

th
e

S
D

al
g

o
ri

th
m

an
d

co
m

p
et

in
g

al
g

o
ri

th
m

s
o

n
u

n
im

o
d

al
b

en
ch

m
ar

k
te

st
fu

n
ct

io
n

s

F
n

A
lg

o
ri

th
m

B
B

O
D

E
G

A
G

JO
G

P
C

G
W

O
IW

O
P

S
O

T
L

B
O

W
S

O
S
D

f 1
5
.6

e-
0
9
±

1
.9

e-
0
8

0
.0
0
0
0
–
0
.0
0
0
0

0
.0

0
0
5
±

0
.0

0
1
6

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

8
.5

e-
0
8
±

6
.4

e-
0
8

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

f 2
4
.9

e-
0
7
±

7
.6

e-
0
7

2
.9

7
3
5
±

3
.4

3
1
7

0
.0

0
0
6
±

0
.0

0
0
8

6
.4

e-
0
6
±

6
.5

e-
0
6

0
.0

0
8
0
±

0
.0

0
7
3

1
.0

e-
0
8
±

1
.2

e-
0
8

7
.1

e-
0
9
±

6
.4

e-
0
9

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

1
.4

e-
2
2
±

8
.e

-2
2

0
.0
0
0
0
–
0
.0
0
0
0

f 3
-

0
.9

3
3
3
±

0
.2

5
3
7

-
3
.1

e-
0
5
±

4
.3

e-
0
6

-
0
.9

3
3
2
±

0
.2

5
3
6

-
0
.9

9
9
9
±

1
.2

e-
0
5

-1
.0
0
0
0
–
0
.0
0
0
0

-
3
.0

e-
0
5
±

1
.0

e-
2
0

-
0
.2

0
0
0
±

0
.4

0
6
8

-1
.0
0
0
0
–
0
.0
0
0
0

-
0
.9

6
6
6
±

0
.1

8
2
5

-1
.0
0
0
0
–
0
.0
0
0
0

-1
.0
0
0
0
–
0
.0
0
0
0

f 4
-

0
.7

3
3
3
±

0
.1

6
3
6

-
2
.4

1
2
0
±

0
.8

5
5
2

-
0
.8

6
9
0
±

2
.3

e-
0
8

-
0
.8

6
9
0
±

1
.8

e-
0
7

-0
.8
6
9
0
–
0
.0
0
0
0

-
2
.8

7
3
9
±

1
.6

e-
0
9

-
0
.8

6
9
0
±

3
.5

e-
0
9

-
0
.7

9
7
4
±

0
.1

2
8
8

-0
.8
6
90

–
0
.0
0
0
0

-0
.8
6
9
0
–
0
.0
0
0
0

-0
.8
6
9
0
–
0
.0
0
0
0

f 5
3
.6

e-
0
6
±

6
.9

e-
0
6

0
.0
0
0
0
–
0
.0
0
0
0

0
.0

0
0
2
±

0
.0

0
0
5

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

3
.2

e-
1
0
±

2
.9

e-
1
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

f 6
0
.0

6
7
0
±

0
.0

6
7
5
1

2
1
.0

6
7
2
±

2
4
.2

6
6
4

0
.2

7
2
5
±

0
.6

9
0
6

0
.4

4
4
8
±

0
.4

0
9
9

0
.0

0
3
7
±

0
.0

0
5
4

1
7
5
.5

0
±

2
3
7
.4

2
0
.0

0
0
9
±

0
.0

0
1
7

0
.0

0
4
0
±

0
.0

0
5
3

0
.0

0
4
9
±

0
.0

0
8
4

0
.0

0
6
4
±

0
.0

1
0
2

0
.0
0
0
3
–
1
.1
e-
1
9

f 7
0
.0

0
0
6
±

0
.0

0
0
9

0
.0
0
0
0
–
0
.0
0
0
0

0
.0

0
0
6
±

0
.0

0
1
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

0
.0

6
0
4
±

0
.0

9
3
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

f 8
0
.5
0
0
0
–
9
.1
0
e-
0
7

0
.5

0
0
3
±

0
.0

0
0
1

0
.5
0
0
0
–
1
.1
e-
0
6

0
.5
0
0
0
–
3
.6
e-
0
7

0
.5
0
0
0
–
2
.3
e-
0
6

0
.5

0
0
5
±

0
.0

0
0
3

0
.5

0
0
1
±

4
.2

e-
0
5

0
.5
0
0
0
–
6
.0
e-
0
8

0
.5
0
00

–
2
.3
e-
0
7

0
.5

0
0
1
±

2
.7

e-
0
6

0
.5
0
0
0
–
2
.5
e-
0
7

f 9
1
.0

2
7
3
±

0
.0

1
2
2

0
.0
0
0
0
–
0
.0
0
0
0

1
.0

3
6
4
±

0
.0

1
7
2

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

In
fe

as
ib

le
0
.0

3
5
8
±

0
.0

3
8
0

0
.0
0
00

–
0
.0
0
0
0

7
.6

8
1
7
±

3
.5

4
4
2

0
.0

1
4
3
±

0
.0

1
6
1

f 1
0

2
0
.0

9
9
4
±

4
.6

8
5
8

1
.5

e-
1
1
±

7
.7

e-
1
1

3
0
.5

0
9
2
±

1
6
.1

1
8
2

4
.3

e-
1
7
±

1
.3

e-
1
6

9
.1

e-
1
4
±

2
.8

e-
1
3

1
.5

e-
1
7
±

7
.0

e-
1
7

In
fe

as
ib

le
0
.0

0
1
6
±

0
.0

0
1
9

0
.0

0
3
6
±

0
.0

0
4
8

In
fe

as
ib

le
4
.2
e-
2
0
–
3
.7
e-
2
0

f 1
1

1
1
2
8
.3

5
±

4
7
2
.1

4
7
4
.3

5
6
±

3
1
5
.0

0
7
4

In
fe

as
ib

le
2
3
9
.7

0
±

3
0
1
.8

6
8
5
.2

9
3
1
±

7
8
.5

3
9
6
.1

3
4
5
±

2
0
4
.0

8
In

fe
as

ib
le

9
8
1
.1

5
±

1
5
9
7
.1

4
4
9
2
.3

9
±

5
1
4
.4

0
In

fe
as

ib
le

4
7
.9
7
8
–
6
9
.2
69

f 1
2

0
.0

1
0
2
±

0
.0

0
2
7

3
.7

e-
1
3
±

1
.4

e-
1
2

0
.0

1
3
2
±

0
.0

0
5
7

3
.0

e-
1
2
±

7
.9

e-
1
2

1
.1

e-
1
6
±

4
.7

e-
1
6

9
.9

e-
0
5
±

2
.7

e-
0
5

0
.0

0
0
1
±

3
.2

e-
0
5

1
.1

e-
0
6
±

4
.3

e-
0
6

0
.0

0
0
1
±

0
.0

0
2
3

2
.2

6
0
7
±

1
.2

4
4
1

7
.6
e-
2
6
–
8
.7
e-
2
6

f 1
3

1
.6

e-
1
4
±

3
.9

e-
1
4

0
.0
0
0
0
–
0
.0
0
0
0

8
.4

e-
0
7
±

2
.6

e-
0
6

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
00

–
0
.0
0
0
0

7
.3

e-
0
7
±

4
.1

e-
0
7

1
.1

e-
2
3
±

4
.9

e-
2
3

0
.0
0
00

–
0
.0
0
0
0

6
.6

e-
0
7
±

1
.6

e-
0
6

0
.0
0
0
0
–
0
.0
0
0
0

f 1
4

0
.4

3
9
1
±

0
.1

1
2
6

0
.5

0
0
0
±

2
.7

3
8
6

0
.7

7
5
7
±

0
.4

1
2
2

3
.6

e-
4
9
±

8
.4

e-
4
9

9
.0

e-
2
5
±

2
.4

e-
2
4

2
.4

e-
6
8
±

1
.3

e-
6
7

0
.0

8
2
2
±

0
.0

9
8
2

0
.0

0
0
2
±

0
.0

0
0
5

0
.0
0
00

–
0
.0
0
0
0

1
2
2
.4

7
±

1
0
3
.2

4
0
.0
0
0
0
–
0
.0
0
0
0

f 1
5

6
.3

6
1
5
±

5
.0

8
4
0

0
.8

8
5
9
5
±

1
.8

8
0
3

1
6
3
.1

3
±

4
8
.5

5
6
1

1
.3

e-
1
3
±

5
.4

e-
1
3

2
.1

e-
2
4
±

6
.5

e-
2
4

In
fe

as
ib

le
2
.6

3
9
4
±

2
.0

2
7
2

1
1
.2

6
9
2
±

6
.3

0
5
3

6
.4

e-
1
2
±

1
.3

e-
1
1

2
0
3
.3

9
±

1
0
1
.0

2
0
.0
0
0
0
–
0
.0
0
0
0

 596 Page 14 of 35 Cluster Computing (2025) 28:596

123

Ta
bl
e
7

R
es

u
lt

s
o

b
ta

in
ed

fr
o

m
ap

p
ly

in
g

th
e

S
D

al
g

o
ri

th
m

an
d

co
m

p
et

in
g

al
g

o
ri

th
m

s
o

n
m

u
lt

im
o

d
al

b
en

ch
m

ar
k

te
st

fu
n

ct
io

n
s

F
n

A
lg

o
ri

th
m

B
B

O
D

E
G

A
G

JO
G

P
C

f 1
6

0
.1

8
0

4
±

0
.3

7
0

9
0

.5
2

3
5
±

0
.9

3
7

8
0

.0
7

0
2
±

0
.2

5
4

4
0

.0
5

0
8
±

0
.1

9
3

3
0

.0
1

2
7
±

0
.0

2
8

8

f 1
7

0
.3
9
7
8
–
0
.0
0
0
0

2
.1

6
7

1
±

1
.0

6
0

4
0

.3
9

7
9
±

2
.9

e-
0

5
0

.6
3

7
4
±

0
.7

3
0

1
0
.3
9
7
8
–
0
.0
0
0
0

f 1
8

0
.1

0
8

2
±

0
.0

5
3

6
0

.1
0

1
7
±

0
.0

3
0

5
0

.1
0

1
8
±

0
.0

1
1

0
5

0
.1

1
0

8
±

0
.0

1
9

8
0

.1
0

1
1
±

0
.0

0
0

7

f 1
9

-1
.0
3
1
6
–
0
.0
0
0
0

-
1

.0
0

4
7
±

0
.0

0
9

8
-

1
.0

3
1

6
±

1
.3

e-
0

6
-

1
.0

3
1

6
±

2
.4

e-
0

7
-

1
.0

3
1

6
±

1
.2

e-
0

9

f 2
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

f 2
1

2
.7

6
9

1
±

2
.5

4
2

4
0
.0
0
0
0
–
0
.0
0
0
0

6
.2

0
1

5
±

9
.4

5
0

8
1

.3
3

2
4
±

0
.4

1
3

1
0

.0
0

8
8
±

0
.0

3
7

8

f 2
2

-2
.0
6
2
6
–
0
.0
0
0
0

-
2

.0
4

5
4
±

0
.0

0
6

8
-

2
.0

6
2

6
±

5
.3

e-
0

7
-

2
.0

6
2

6
±

1
.0

e-
0

5
-2
.0
6
2
6
–
0
.0
0
0
0

f 2
3

7
.1

6
8

7
±

5
.4

3
2

5
8

.5
7

4
5
±

4
.2

9
6

9
1

.9
9

0
8
±

0
.1

0
0

5
7

.8
9

4
8
±

4
.7

2
7

3
1

.0
3

1
1
±

0
.1

8
1

4

f 2
4

-
0

.9
3

6
0
±

0
.0

5
7

6
-1
.0
0
0
0
–
0
.0
0
0
0

-
0

.9
5

7
4
±

0
.0

3
0

5
-1
.0
0
0
0
–
0
.0
0
0
0

-1
.0
0
0
0
–
0
.0
0
0
0

f 2
5

-
7

9
9

.3
6
±

1
4

5
.3

7
-

5
4

8
.6

5
±

1
1

7
.2

8
-

8
3

7
.1

6
±

1
0

0
.5

7
-

8
7

7
.8

7
±

1
1

0
.9

4
-

9
5

6
.1

5
±

5
.4

8

f 2
6

-
6

.0
2

0
7
±

7
.1

e-
0

8
-

6
.0

2
0

7
±

0
.0

0
0

0
-

6
.0

2
0

7
±

1
.9

e-
0

7
-

6
.0

2
0

7
±

4
.1

e-
0

8
-

6
.0

2
0

7
±

0
.0

0
0

0

f 2
7

-
3

.8
3

7
0
±

0
.1

2
1

1
-3
.8
6
2
8
–
0
.0
0
0
0

-
3

.8
3

7
0
±

0
.1

4
2

1
-

3
.8

5
7

8
±

0
.0

0
3

5
-

3
.7

3
9

8
±

0
.2

7
2

2

f 2
8

-
3

.0
8

6
9
±

0
.0

9
6

8
-

3
.1

3
3

8
±

0
.0

0
2

7
-

3
.0

6
3

1
±

0
.1

1
0

9
-

3
.0

8
6

8
±

0
.1

5
5

1
-

3
.1

3
4

5
±

2
.3

e-
0

6

f 2
9

-
3

.0
1

3
8
±

0
.0

3
1

1
-

3
.0

3
6

2
±

0
.0

1
6

5
-

3
.0

2
4

0
±

0
.0

2
8

6
-

2
.9

0
0

1
±

0
.2

0
8

5
-

3
.3

0
7

0
±

0
.0

3
4

0

f 3
0

-
1

8
.5

6
1

6
±

2
.4

6
1

9
-

1
0

.0
7

9
2
±

4
.0

8
7

0
-

1
9

.2
0

8
3
±

0
.0

0
0

2
-

1
9

.2
0

7
9
±

0
.0

0
0

6
-

1
9

.2
0

8
3
±

0
.0

0
0

2

f 3
1

-3
.4
1
9
6
–
0
.8
5
6
6

-
3

.7
8

9
1
±

0
.0

8
4

5
-

3
.6

4
0

8
±

0
.8

1
8

9
7

-
3

.8
7

1
2
±

0
.2

2
3

3
-

3
.5

4
8

3
±

0
.5

5
3

3

f 3
2

2
.4

e-
0

9
±

1
.1

e-
0

8
1

.3
e-

3
1
±

6
.6

e-
4

7
1

.4
e-

0
5
±

3
.5

e-
0

5
7

.9
e-

0
6
±

6
.6

e-
0

6
1

.3
e-

0
9
±

6
.6

e-
0

9

f 3
3

-
1

.9
0

9
8
±

0
.0

1
8

7
-

1
.5

0
6

2
±

0
.2

7
9

6
-

1
.9

1
3

2
±

1
.8

e-
0

6
-

1
.9

1
3

2
±

7
.4

e-
0

7
-

1
.9

0
6

4
±

0
.0

2
5

9

f 3
4

-
1

.8
0

1
3
±

7
.5

e-
1

3
-

1
.0

3
1

2
±

0
.2

4
2

9
-

1
.8

0
1

3
±

3
.5

e-
0

6
-

1
.7

7
4

5
±

0
.1

4
6

2
-

1
.8

0
1

3
±

3
.5

e-
0

6

f 3
5

-
5

.3
3

3
9
±

3
.5

4
2

3
-

5
.1

2
8

5
±

2
.7

1
e-

1
5

-
5

.3
4

3
2
±

3
.2

3
0

1
-

9
.8

6
0

9
±

2
.0

3
6

6
-

7
.2

9
9

7
±

3
.8

4
7

4

f 3
6

-
1

8
6

.7
3
±

1
.9

4
e-

0
9

-
6

9
.2

1
9
±

3
9

.0
1

0
3

-
1

8
6

.7
3
±

0
.0

0
0

6
-

1
8

6
.6

2
±

0
.4

4
1

7
-

1
8

6
.7

3
±

5
.2

e-
0

6

f 3
7

-
4

9
.9

9
8

6
±

0
.0

0
1

2
-

5
.1

0
6

6
±

0
.2

3
0

0
2

-
4

9
.1

6
0

4
±

0
.7

1
7

0
-

4
4

.6
4

4
9
±

1
1

.9
8

1
4

-5
0
.0
0
0
0
–
0
.0
0
0

f 3
8

0
.7

9
6

9
±

0
.1

2
2

5
0

.0
4

7
8
±

0
.1

8
1

9
4

1
.0

8
8
±

0
.3

7
6

8
4

.5
e-

1
1
±

1
.2

e-
1

1
2

.6
e-

1
1
±

4
.2

e-
1

1

f 3
9

2
.7

6
1

8
±

1
.3

4
8

0
1

.1
1

3
7
±

1
.0

4
5

1
1

1
.3

6
1

0
±

5
.1

3
8

0
0

.6
6

6
6
±

6
.2

e-
0

7
0

.6
6

6
9
±

0
.0

0
0

4

f 4
0

1
0

.1
2

5
2
±

5
.9

7
3

6
0
.0
0
3
0
–
0
.0
1
6
5

0
.1

2
2

5
±

0
.5

1
4

4
2

.0
0

0
0
±

0
.2

0
3

1
2

.4
7

1
3
±

0
.0

4
7

7

f 4
1

0
.2

8
2

6
±

0
.1

0
7

8
0

.0
0

1
7
±

0
.0

0
2

1
2

.5
5

9
1
±

1
.8

3
8

7
2

.3
e-

0
7
±

1
.0

e-
0

6
1

.0
e-

2
0
±

2
.9

e-
2

0

f 4
2

7
0

.2
1

7
9
±

1
9

.0
3

1
5

0
.7

3
1

1
±

0
.8

6
5

6
7

.5
4

7
6
±

2
.6

5
5

8
0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

f 4
3

1
0

3
.5

8
1

3
±

5
6

.6
7

6
7

3
7

.4
8

2
1
±

3
3

.5
5

6
4

1
2

4
.4

1
3

2
±

3
9

.1
8

6
0

2
7

.9
2

2
0
±

0
.6

6
8

2
2

8
.8

3
0

3
±

0
.1

4
2

3

f 4
4

5
7

1
9

.2
0
±

6
3

6
.7

6
9

9
3

5
.5

8
±

3
9

6
.7

3
5

3
2

1
.6

7
±

3
1

9
.2

5
8

5
4

1
.2

5
±

8
7

4
.4

7
5

2
6

1
.3

6
±

6
1

3
.8

6

f 4
5

-
3

5
.0

6
1

3
±

0
.9

9
8

3
-

1
6

.3
6

5
0
±

1
.7

7
2

6
-

3
3

.9
7

4
6
±

1
.1

4
7

6
-

2
4

.1
8

9
3
±

2
.7

8
5

6
-

3
2

.7
5

7
5
±

1
.3

6
6

8

Cluster Computing (2025) 28:596 Page 15 of 35 596

123

Ta
bl
e
7

co
n

ti
n

u
ed

F
n

A
lg

o
ri

th
m

G
W

O
IW

O
P

S
O

T
L

B
O

W
S

O
S
D

f 1
6

2
.3

5
0

0
±

1
.5

8
6

4
0

.0
7

6
2
±

0
.2

3
2

5
0

.0
5

0
8
±

0
.1

9
3

3
0

.0
2

5
4
±

0
.1

3
9

1
1

.4
e-

0
9
±

4
.0

e-
0

9
1
.8
e-
1
1
–
1
.6
e-
1
1

f 1
7

3
.2

1
2

3
±

3
.4

5
5

2
0
.3
9
7
8
–
0
.0
0
0
0

0
.3
9
7
8
–
0
.0
0
0
0

0
.3
9
7
8
–
0
.0
0
0
0

0
.3

9
7

9
±

7
.0

e-
0

5
0
.3
9
7
8
–
0
.0
0
0
0

f 1
8

0
.1

0
1

1
±

0
.0

0
8

1
0

.2
0

9
8
±

0
.0

6
1

0
0

.1
0

1
1
±

0
.0

0
9

2
0

.1
0

5
4
±

0
.0

1
7

9
0

.1
3

7
3
±

0
.0

3
1

9
0
.1
0
1
0
–
0
.0
1
1
2

f 1
9

-
1

.0
0

0
0
±

2
.4

3
e-

0
6

-
1

.0
3

1
6
±

1
.9

e-
0

8
-1
.0
3
1
6
–
0
.0
0
0
0

-1
.0
3
1
6
–
0
.0
0
0
0

-
1

.0
3

1
6
±

2
.3

e-
0

6
-1
.0
3
1
6
–
0
.0
0
0
0

f 2
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

0
.0
0
0
0
–
0
.0
0
0
0

f 2
1

0
.3

7
0

0
±

2
.0

2
6

6
0

.0
1

3
9

3
±

0
.0

3
2

6
0

.0
3

7
0
±

0
.0

5
4

0
0

.8
3

3
6
±

1
.8

4
1

2
0

.5
7

2
8
±

1
.3

5
5

8
0
.0
0
0
0
–
0
.0
0
0
0

f 2
2

-
2

.0
3

6
2
±

0
.0

0
5

6
-

2
.0

5
1

1
±

0
.0

4
3

8
-2
.0
6
2
6
–
0
.0
0
0
0

-2
.0
6
2
6
–
0
.0
0
0
0

-
2

.0
6

2
6
±

1
.4

e-
0

5
-2
.0
6
2
6
–
0
.0
0
0
0

f 2
3

1
2

.0
8

3
0
±

1
.9

0
9

9
9

.7
9

3
5
±

7
.3

0
6

4
6

.0
6

9
3
±

5
.2

4
7

6
1

.3
5

9
9
±

1
.2

5
5

1
1

.4
2

6
7
±

1
.2

8
9

6
0
.9
9
8
0
–
7
.1
e-
1
0

f 2
4

-1
.0
0
0
0
–
0
.0
0
0
0

-1
.0
0
0
0
–
0
.0
0
0
0

-
0

.9
9

7
8
±

0
.0

1
1

6
-

0
.9

9
7

8
±

0
.0

1
1

6
-1
.0
0
0
0
–
0
.0
0
0
0

-1
.0
0
0
0
–
0
.0
0
0
0

f 2
5

-
5

0
7

.4
0
±

1
3

7
.1

6
-

6
7

8
.5

6
±

1
4

5
.2

0
-

7
3

0
.6

2
±

1
3

7
.2

6
-

9
1

9
.7

0
±

5
3

.6
1

-
9

2
9

.9
6
±

6
3

.1
6

-9
5
7
.4
7
–
1
1
.8
7

f 2
6

-
6

.0
2

0
7
±

8
.9

e-
0

9
-

6
.0

2
0

7
±

1
.3

e-
0

9
-

6
.0

2
0

7
±

0
.0

0
0

0
-

6
.0

2
0

7
±

0
.0

0
0

0
-6
.0
2
0
7
–
0
.0
0
0
0

-6
.0
2
0
7
–
0
.0
0
0
0

f 2
7

-
3

.8
5

9
6
±

0
.0

0
3

2
-

3
.8

6
2

8
±

5
.0

e-
0

7
-

3
.7

5
9

7
±

0
.2

6
7

2
-

3
.7

1
1

7
±

0
.1

6
2

7
-3
.8
6
2
8
–
0
.0
0
0
0

-3
.8
6
2
8
–
0
.0
0
0
0

f 2
8

-
3

.0
9

9
5
±

0
.1

1
8

5
-

3
.1

3
4

5
±

2
.1

e-
0

6
-

3
.0

5
5

1
±

0
.1

1
4

1
-

3
.1

3
4

5
±

5
.8

e-
0

9
-

3
.1

0
2

8
±

0
.0

8
2

3
-3
.1
3
4
5
–
0
.0
0
0
0

f 2
9

-
3

.0
0

7
0
±

0
.0

5
0

2
-

2
.9

8
7

1
±

0
.0

1
8

7
-

3
.0

2
6

1
±

0
.0

2
7

6
-

3
.0

1
3

5
±

0
.0

3
1

0
-

3
.0

2
6

0
±

0
.0

2
7

6
-3
.3
1
0
4
–
0
.0
0
0
8

f 3
0

-
1

0
.3

4
5

7
±

3
.4

8
9

1
-

1
6

.4
5

4
4
±

4
.3

5
9

9
-

1
7

.3
1

9
9
±

3
.8

5
0

9
-

1
9

.2
0

8
4
±

0
.0

0
0

1
-

1
9

.2
0

8
4
±

0
.0

0
0

1
-1
9
.2
0
8
5
–
3
.1
e-
0
5

f 3
1

-
3

.7
6

7
1
±

0
.0

4
9

5
-

4
.0

1
8

4
±

0
.4

9
6

1
-

3
.6

2
9

4
±

0
.8

4
9

4
5

-
4

.0
6

4
7
±

0
.1

5
2

8
-

4
.1

4
9

2
±

0
.0

1
2

1
-

3
.5

6
7

5
±

0
.8

4
0

1

f 3
2

1
.3

e-
0

9
±

6
.5

e-
0

9
4

.5
e-

0
8
±

5
.1

e-
0

8
1

.2
e-

0
8
±

6
.6

e-
0

8
2

.2
e-

0
8
±

3
.4

e-
0

8
2

.2
e-

0
9
±

7
.3

e-
0

9
4
.2
e-
1
1
–
3
.2
e-
1
1

f 3
3

-
1

.0
8

1
±

0
.7

2
0

4
-

1
.9

1
3

2
±

4
.0

e-
0

9
-1
.9
1
3
2
–
0
.0
0
0
0

-1
.9
1
3
2
–
0
.0
0
0
0

-1
.9
1
3
2
–
0
.0
0
0
0

-1
.9
1
3
2
–
0
.0
0
0
0

f 3
4

-
1

.0
3

8
9
±

0
.2

5
8

7
-

1
.8

0
1

3
±

9
.8

e-
0

8
-1
.8
0
1
3
–
0
.0
0
0
0

-1
.8
0
1
3
–
0
.0
0
0
0

-1
.8
0
1
3
–
0
.0
0
0
0

-1
.8
0
1
3
–
0
.0
0
0
0

f 3
5

-
5

.1
2

8
5
±

2
.7

e-
1

5
-

4
.5

2
4

9
±

2
.8

7
7

1
-

6
.6

6
9

6
±

3
.4

6
5

3
-

7
.5

9
8

3
±

3
.1

4
2

4
-

9
.4

1
8

7
±

2
.5

4
9

8
-1
0
.5
3
6
4
–
0
.0
0
0
0

f 3
6

-
5

3
.4

9
1
±

3
5

.6
0

5
1

-
1

8
6

.7
3
±

6
.8

e-
0

6
-1
8
6
.7
3
–
0
.0
0
0
0

-
1

8
6

.7
3
±

0
.0

0
1

2
-

1
8

5
.8

2
±

1
.0

0
3

7
-1
8
6
.7
3
–
0
.0
0
0
0

f 3
7

In
fe

as
ib

le
-5
0
.0
0
0
0
–
0
.0
0
0

-5
0
.0
0
0
0
–
0
.0
0
0

-
4

9
.9

2
4

2
±

0
.1

3
4

5
-

4
9

.9
8

6
3
±

0
.0

4
8

4
-5
0
.0
0
0
0
–
0
.0
0
0

f 3
8

0
.0

8
2

2
±

0
.4

5
0

4
1

9
.0

9
6

6
±

0
.1

7
8

5
2

.1
2

6
8
±

0
.6

7
0

1
2

.8
e-

1
1
±

9
.9

e-
1

1
7

.9
8

6
3
±

1
.7

6
4

5
1
.4
e-
1
2
–
1
.6
e-
1
2

f 3
9

0
.6

7
7

7
±

0
.0

6
0

8
2

.3
5

8
3
±

2
.9

7
3

5
1

.1
3

5
7
±

0
.9

2
8

1
0

.6
6

6
6
±

2
.2

e-
0

7
In

fe
as

ib
le

0
.6
6
6
6
–
8
.1
e-
0
6

f 4
0

2
.4

3
3

2
±

1
.1

5
3

4
4

0
.1

9
1

6
±

9
.6

2
6

0
3

.1
5

7
1
±

1
.9

4
2

2
2

.1
4

6
7
±

1
.3

0
3

6
4

.3
3

3
0
±

2
.2

6
6

2
0

.6
7

9
5
±

0
.0

5
5

8

f 4
1

1
.5

e-
0

7
±

3
.4

e-
0

7
0

.7
3

8
9
±

0
.4

7
5

4
0

.0
1

0
9
±

0
.0

0
9

5
1

.5
e-

1
0
±

6
.3

e-
1

0
3

3
.4

5
5

8
±

2
2

.4
4

7
8

1
.8
e-
2
6
–
2
.0
e-
2
6

f 4
2

3
0

.8
4

6
2
±

1
1

.0
6

4
9

1
1

9
.8

5
0
±

2
7

.4
5

2
6

5
3

.3
6

3
2
±

1
4

.4
7

1
1

2
9

.5
2

0
8
±

2
4

.3
6

4
1

6
4

.8
5

6
±

1
9

.8
1

0
1

0
.0
0
0
0
–
0
.0
0
0
0

f 4
3

2
7

.2
6

9
3
±

1
.9

0
2

4
4

8
.1

8
5

4
±

5
2

.0
3

2
7

4
9

.0
0

4
8
±

3
1

.4
7

2
6

2
7

.9
1

4
4
±

0
.3

7
3

3
In

fe
as

ib
le

2
7
.1
8
9
4
–
0
.2
5
4
9

f 4
4

1
0

,4
0

9
.5

6
±

4
7

8
.9

9
7

4
2

1
.2

1
±

5
8

2
.9

4
6

2
2

4
.4

2
±

8
6

6
.9

7
5

3
9

0
.3

0
±

7
4

8
.0

2
7

0
0

3
.8

1
±

1
5

2
3

.5
5

5
2
2
7
.5
0
–
4
4
2
.1
9

f 4
5

-
1

4
.2

2
5

0
±

1
.7

2
8

0
-

3
2

.8
3

5
6
±

1
.0

7
6

3
-

3
3

.2
4

4
3
±

1
.2

9
6

0
-

3
1

.8
8

0
0
±

1
.6

6
9

0
-

3
0

.0
1

1
0
±

1
.5

7
0

3
-3
8
.2
1
1
5
–
0
.8
0
2
1

 596 Page 16 of 35 Cluster Computing (2025) 28:596

123

Fig. 10. In Fig. 10, the SD algorithm solves the Sphere

function as an example. The absorption rate parameter was

set once to 1 and again to 4. It can be seen that by setting

the parameter to the number 4, the algorithm spends more

time in the exploration phase.

5 Statistical analysis

Statistical analysis is the examination of significant dif-

ferences between algorithms using statistical hypothesis

testing. The purpose of statistical analysis is to determine

Fig. 7 Function shape, convergence diagram, and perspective view at 1st, 5th, and 10th iteration, respectively, from left to right

Cluster Computing (2025) 28:596 Page 17 of 35 596

123

whether the difference in the results obtained from the

algorithms is real or due to a statistical chance of the results

obtained. For this purpose, relationships and probabilities

between data are determined and investigated

quantitatively.

In this paper, Friedman and Iman-Davenport tests are

used to find significant differences between the results

Fig. 8 Convergence curves of algorithms for 12 randomly selected benchmark test functions (Part one)

Fig. 9 Convergence curves of algorithms for 12 randomly selected benchmark test functions (Part two)

 596 Page 18 of 35 Cluster Computing (2025) 28:596

123

obtained from the SD algorithm and other competing

algorithms. Table 8 shows Friedman’s ranking based on the

results obtained from two Tables 6 and 7.

As Table 8 shows, according to Friedman’s ranking, the

SD algorithm has the best ranking, followed by the GPC

algorithm and then TLBO.

Table 9 shows the results of Friedman and Iman-

Davenport tests. It also shows that the hypothesis is

rejected. This table shows that there is a significant dif-

ference in the performance of the algorithms.

However, rejecting the hypothesis and identifying the

significant level alone is not enough to show a significant

difference. To prove the existence of a significant differ-

ence, post-hoc tests should be used, which makes a better

analysis. In this paper, Holm’s method is used as a post-hoc

test. In this test, the best rank obtained through the Fried-

man ranking, which is the SD algorithm, is considered as

control algorithm and is compared one by one with other

algorithms. Also, consider that the confidence interval for

this analysis is 95% (a = 0.05). The results obtained from

Holm’s method are shown in Table 10. The results of the

post-hoc test show that the SD algorithm has a significant

difference from other competing algorithms.

6 High-dimensional tests

Various sciences and technology are always developing

and expanding. This expansion causes the search space to

become larger and more complex. Therefore, optimization

solutions in high dimensions are felt more than before.

Enlarging the search scale is one of the points that we

justify in solving optimization problems. Many existing

metaheuristics cannot solve high-dimensional problems.

Table 8 Ranking of the

algorithms (sorted in

descending order)

Algorithm Ranking

SD 2.69

GPC 3.96

TLBO 5.16

GJO 5.76

PSO 5.88

DE 6.52

WSO 6.99

GWO 7.12

BBO 7.13

GA 7.26

IWO 7.54

Table 9 Results of Friedman’s

and Iman–Davenport’s tests
Test method Chi-Square Degrees of freedom (DF) p-Value Hypothesis

Friedman 109.3004 10 7.3829e-19 Rejected

Iman–Davenport 12.6450 10 2.2000e-16 Rejected

Table 10 Results of the Holm’s

method based on the mean of 30

independent runs (SD is the

control algorithm)

Algorithm j a/j z-Score p-Value Hypothesis

GPC 1 0.05 1.816346233 0.034662 Rejected

TLBO 2 0.025 3.532578893 0.000206 Rejected

GJO 3 0.016666667 4.390695223 \ 0.00001 Rejected

PSO 4 0.0125 4.562318490 \ 0.00001 Rejected

DE 5 0.01 5.477642575 \ 0.00001 Rejected

WSO 6 0.008333333 6.149833701 \ 0.00001 Rejected

GWO 7 0.007142857 6.335758906 \ 0.00001 Rejected

BBO 8 0.00625 6.350060844 \ 0.00001 Rejected

GA 9 0.005555556 6.535986049 \ 0.00001 Rejected

IWO 10 0.005 6.936440337 \ 0.00001 Rejected

Fig. 10 Adjusting the amount of exploration by changing the

absorption rate parameter

Cluster Computing (2025) 28:596 Page 19 of 35 596

123

The reason is that as the dimensions of the problem

increase, its search space increases exponentially. This

makes the evaluation of high-dimensional problems very

costly. One of the important points is the interaction

between variables. If the variables are independent, even if

the dimensions are increased, each of the variables can be

solved and the whole problem can be solved. But if the

variables interact with each other, they all have to be

optimized together, so optimization becomes difficult.

In this section, an experiment has been performed to

evaluate the performance of the algorithm presented in the

high dimensions. The difference between the experiments

related to this section and Sect. 4 is the number of

dimensions. The number of dimensions is 5000 and 10,000.

It should be mentioned that this experiment was performed

for benchmark functions for which high dimensions can be

considered. This means that experiments have been per-

formed on the benchmark functions of Tables 2 and 4.

Also, according to Table 8, the second-best and the third-

best algorithms have been used for comparison. According

to the table, GPC and TLBO algorithms are selected for

comparison. Table 11 shows the results of running the

algorithms on the high dimensions. Here we point out that

some solutions obtained from some algorithms are not

within the acceptable range. Therefore, it is specified in the

table with the term infeasible. This means that the algo-

rithm failed to provide a suitable solution.

Table 11 shows that the SD algorithm can solve prob-

lems in high dimensions better than the other two algo-

rithms. However, in the case of the Schwefel function (f 44),

Table 11 The Mean and Standard Deviation of applying the TLBO, GPC and SD algorithms on high-dimensional test functions

Fn Algorithms

TLBO GPC SD

dim = 5000 dim = 10,000 dim = 5000 dim = 10,000 dim = 5000 dim = 10,000

f 9 1.11e-16 ± 1.12e-16 1.12e-16 ± 1.08e-17 0.0000 – 0.0000 0.0000 – 0.0000 0.0000 – 0.0000 0.0000 – 0.0000

f 10 2.91e-16 ± 6.40e-16 1.11e-15 ± 6.14e-15 2.25e-17 ± 2.05e-17 1.74e-16 ± 1.63e-16 4.12e-20 – 3.67e-20 2.32e-18 – 2.47e-17

f 11 Infeasible Infeasible 115.9573 ± 67.8546 191.2547 ± 99.8552 77.9521 – 41.6595 107.2541 – 56.7452

f 12 1.16e-15 ± 9.18e-16 1.05e-14 ± 1.17e-14 1.69e-21 ± 1.89e-21 1.38e-22 ± 1.48e-22 6.99e-34 – 1.13e-34 8.78e-33 – 1.47e-33

f 13 2.48e-17 ± 2.86e-17 4.14e-16 ± 4.23e-16 3.00e-37 ± 4.68e-37 5.41e-39 ± 7.65e-39 3.59e-49 – 2.51e-49 2.35e-44 – 3.14e-44

f 14 6.45e-18 ± 1.38e-19 2.26e-10 ± 2.92e-10 1.36e-18 ± 1.79e-18 9.41e-17 ± 3.50e-17 8.32e-30 – 7.02e-32 2.92e-28 – 6.37e-29

f 15 Infeasible Infeasible 2.55e-15 – 4.29e-15 3.03e-15 – 1.59e-15 7.5005 ± 10.6063 0.0195 ± 0.0266

f 38 4.44e-15 ± 4.32e-16 3.14e-15 ± 2.25e-14 4.71e-12 ± 3.97e-12 2.30e-12 ± 2.40 -12 0.0000 – 0.0000 0.0000 – 0.0000

f 39 0.9999 ± 5.19e-05 1.0000 ± 1.59e-06 1.0000 ± 1.23e-07 1.0000 ± 3.57e-09 0.6761 – 0.0111 0.6674 – 0.0005

f 40 453.9388 – 0.6220 907.0086 – 2.1256 454.2377 ± 0.1675 908.8227 ± 0.0472 454.5420 ± 0.1654 908.8647 ± 0.0091

f 41 4.47e-22 ± 6.84e-22 1.12e-24 ± 7.3e-25 6.70e-22 ± 7.18e-22 3.29e-19 ± 4.13e-19 9.09e-33 – 3.57e-33 1.25e-31 – 3.32e-32

f 42 0.0000 – 0.0000 0.0000 – 0.0000 0.0000 – 0.0000 0.0000 – 0.0000 0.0000 – 0.0000 0.0000 – 0.0000

f 43 4998.841 ± 0.0025 9997.715 ± 0.0883 4998.215 ± 0.0047 9998.893 ± 0.0076 4997.957 – 0.0073 9996.927 – 0.0141

f 44 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

f 45 - 14.0846 ± 0.0906 - 14.2084 ± 0.1678 - 9.4854 ± 0.1593 - 9.3132 ± 0.0767 -15.3816 – 0.2674 -15.5110 – 0.2019

Table 12 The results of problems RC01 to RC07 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAgES SD

RC01 189.3116 ± 5.6843e-14 217.2743 ± 24.9573 189.3116 ± 1.2937e-09 189.3116 – 0.0000

RC02 7049.037 – 0.0000 7049.037 ± 9.0949e-13 7049.037 ± 2.5233e-08 7049.037 – 0.0000

RC03 - 142.7193 ± 2.1540e-05 - 4366.677 ± 318.5757 - 4324.911 ± 263.7816 -4529.119 – 0.0007

RC04 -0.3882 – 3.8893e-07 - 0.3874 ± 0.0028 - 0.3871 ± 0.0036 - 0.3882 ± 2.5612e-05

RC05 -400.0032 – 0.0059 - 340.8304 ± 112.5827 - 397.6837 ± 7.8463 - 399.7448 ± 0.4734

RC06 1.8699 ± 0.0150 2.0633 ± 0.1016 2.0052 ± 0.1293 1.8638 – 0.0001

RC07 1.5739 ± 0.0159 1.8400 ± 0.1912 2.0213 ± 0.1101 1.5672 – 0.0002

 596 Page 20 of 35 Cluster Computing (2025) 28:596

123

none of the algorithms provided a solution within the

desired range. But in general, the performance of the SD

algorithm is evaluated very well.

7 Analysis of SD on CEC-2020

The CEC 2020 benchmark set is a collection of optimiza-

tion problems used to evaluate the performance of evolu-

tionary algorithms and other metaheuristics. This set is

designed to mimic ‘‘general’’ problems that may be inter-

esting in practice, and it includes a variety of mathematical

functions with known properties. These functions are used

to test the performance of optimization algorithms in terms

of their ability to find good solutions within a given number

of function calls. In general, there are 57 real-world opti-

mization problems in this set. The functions in this set are

designed to test various aspects of optimization algorithms,

such as their ability to handle non-separable functions, non-

convex functions, and functions with discontinuities. The

Table 13 The results of problems RC08 to RC14 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAgES SD

RC08 2.0000 – 0.0000 2.0000 – 0.0000 2.0000 ± 9.9301e-17 2.0000 – 0.0000

RC09 2.5576 – 0.0000 2.5576 – 0.0000 2.5576 ± 2.7153e-09 2.5579 ± 0.0006

RC10 1.0765 – 6.6613e-16 1.1042 ± 0.0623 1.0765 ± 1.8867e-15 1.0765 ± 4.8000e-05

RC11 101.1912 ± 3.4750 147.8153 ± 20.3821 99.2388 ± 0.0004 99.2388 – 0.0003

RC12 2.9248 – 4.4408e-16 2.9248 ± 4.3546e-16 2.9362 ± 0.0110 2.9276 ± 0.0136

RC13 26,887.42 ± 1.0913e-11 26,887.42 ± 1.4287e-11 26,887.42 ± 1.1082e-11 26,887.01 – 0.0004

RC14 58,505.45 ± 0.0127 58,505.45 ± 2.8574e-11 56,620.40 ± 2967.292 53,639.04 – 0.1216

Table 14 The results of problems RC15 to RC33 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAgES SD

RC15 2994.424 ± 4.5474e-13 2994.424 – 8.9628e-13 2994.424 ± 2.4556e-12 2994.424 ± 0.0001

RC16 0.0322 ± 1.3877e-17 0.0322 ± 1.3608e-17 0.0364 ± 0.0017 0.0322 – 2.0816e-17

RC17 0.0126 – 0.0000 0.01266 ± 1.0419e-07 0.0126 ± 4.5420e-06 0.0126 – 0.0000

RC18 6059.714 ± 3.6379e-12 6062.179 ± 8.1967 6088.600 ± 65.0244 5885.361 – 0.0335

RC19 1.6702 ± 2.2204e-16 1.6702 ± 2.1773e-16 1.6702 ± 5.2232e-05 1.6702 – 6.6613e-16

RC20 263.8958 – 5.6843e-14 263.8958 ± 5.5739e-14 263.8958 ± 2.1270e-12 263.8969 ± 0.0012

RC21 0.2352 – 2.7755e-17 0.2352 ± 2.7216e-17 0.2352 ± 1.1102e-16 0.2352 ± 1.1102e-16

RC22 1.0015 ± 0.7105 0.5410 ± 0.0417 0.5308 ± 0.0042 0.5263 – 0.0004

RC23 16.0698 – 3.5527e-15 16.0698 ± 3.4837e-15 16.2086 ± 0.2013 16.0698 – 3.5527e-15

RC24 2.5437 ± 0.0000 2.5437 ± 0.0000 2.8297 ± 0.2155 2.5349 – 0.0161

RC25 1616.120 ± 0.0009 1639.037 ± 98.7721 3022.135 ± 387.5627 1616.120 – 0.0003

RC26 38.5140 ± 2.0720 36.6109 ± 1.3411 53.7101 ± 17.5152 35.3642 – 0.0060

RC27 524.4691 ± 0.0064 524.4507 – 1.1147e-13 524.7400 ± 0.1880 524.4518 ± 0.0010

RC28 14,614.13 – 0.0000 16,958.20 ± 7.1346e-12 14,614.13 ± 1.2639e-11 14,614.36 ± 0.2086

RC29 2,964,895.4 – 4.65e-10 2,964,895.4 ± 4.56e-10 2,964,912.3 ± 34.1029 2,964,895.4 ± 0.0346

RC30 2.6585 ± 4.4408e-16 2.6618 ± 0.0108 4.2369 ± 1.0352 2.6139 – 4.4408E-16

RC31 1.81e-18 ± 8.79e-18 1.88e-16 ± 3.73e-16 9.25e-15 ± 2.64e-15 3.42e-18 – 1.13e-17

RC32 - 30,665.53 ± 7.27e-12 - 30,665.53 ± 7.13e-12 - 30,665.53 ± 3.00e-11 -30,665.48 – 0.0551

RC33 2.6393 ± 4.4408e-16 2.6393 ± 4.3546e-16 2.6393 ± 1.6280e-15 2.6393 – 8.8817e-16

Cluster Computing (2025) 28:596 Page 21 of 35 596

123

classification of these 57 engineering problems is as fol-

lows: number of 7 industrial chemical processes (RC01-

RC07), number of 7 process synthesis and design problems

(RC08-RC14), number of 19 mechanical engineering

problems (RC15-RC33), number of 11 power system

problems (RC34-RC44), number of 6 power electronic

problems (RC45-RC50), and number of 7 livestock feed

ration optimization (RC51-RC57). Complete details of

these problems are available in [88].

For comparison, the SD algorithm is set based on the

conditions in [88]. So that the number of 25 independent

implementations is considered. Also, the number of func-

tion calls and the number of population are based on the

conditions in [88]. A comparison of the mean and standard

Table 15 The results of problems RC34 to RC44 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAgES SD

RC34 0.0007 ± 0.0025 4.9548 ± 1.9767 1.2293 ± 0.5623 0.0003 – 0.0001

RC35 0.0803 ± 0.0001 96.0740 ± 20.8837 0.0922 ± 0.0039 0.0800 – 5.035e-05

RC36 0.0479 ± 0.0001 84.3238 ± 19.0493 0.0657 ± 0.0087 0.0477 – 1.132e-05

RC37 0.0189 ± 0.0006 2.6958 ± 0.7765 0.1671 ± 0.1594 0.0186 – 4.008e-05

RC38 2.7378 ± 0.0714 8.2776 ± 1.5964 4.1325 ± 0.8484 2.7140 – 9.516e-05

RC39 3.0095 ± 0.9431 9.3093 ± 2.4904 4.4215 ± 0.7385 2.7517 – 0.0001

RC40 8.12e-28 – 1.30e-27 111.9598 ± 78.3060 1.46e-27 ± 3.51e-28 723.8742 ± 243.7266

RC41 1.45e-26 ± 1.23e-27 18.2764 ± 14.6613 3.59e-26 – 8.91e-27 2.3899 ± 4.7679

RC42 0.0881 ± 0.0082 2.6137 ± 2.1741 8.2803 ± 15.0155 0.0820 – 0.0042

RC43 0.0834 ± 0.0097 24.0294 ± 5.3787 14.6852 ± 18.7252 0.0830 – 0.0024

RC44 - 6109.461 ± 72.4618 - 6032.419 ± 104.1890 - 6085.704 ± 78.5474 -6135.378 – 154.5109

Table 16 The results of

problems RC45 to RC50 from

CEC 2020

Problem Algorithm

SASS COLSHADE sCMAgES SD

RC45 0.0521 ± 0.0096 0.0427 – 0.0054 0.0856 ± 0.0165 0.0613 ± 0.0212

RC46 0.0542 ± 0.0095 0.0260 ± 0.0055 0.0487 ± 0.0152 0.0202 – 6.244e-06

RC47 0.0462 ± 0.0265 0.0182 ± 0.0031 0.0332 ± 0.0060 0.0177 – 0.0123

RC48 0.0570 ± 0.0192 0.0218 ± 0.0039 0.1332 ± 0.1929 0.0179 – 0.0018

RC49 0.0369 ± 0.0084 0.0325 ± 0.0039 0.1800 ± 0.0881 0.0129 – 0.0029

RC50 0.0236 ± 0.0100 0.0650 ± 0.0472 0.0838 ± 0.0263 0.0151 – 0.0003

Table 17 The results of problems RC51 to RC57 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAgES SD

RC51 4550.972 ± 0.0586 4550.945 ± 0.0665 4551.003 ± 0.1026 4550.924 – 0.1303

RC52 4165.308 ± 256.6721 3372.124 ± 12.7273 3633.938 ± 54.9228 3349.019 – 0.0661

RC53 5252.365 ± 148.0950 5109.499 ± 55.4132 5466.613 ± 113.3049 5001.750 – 4.8793

RC54 4241.097 ± 2.1175 4245.936 ± 3.3429 4273.1001 ± 8.3910 4240.842 – 0.2932

RC55 6700.402 ± 2.3352 6732.505 ± 53.6035 6727.375 ± 0.2777 6699.891 – 4.0427

RC56 14,751.51 ± 3.6906 14,762.76 ± 4.5762 14,764.76 ± 3.2363 14,748.93 – 2.6475

RC57 3213.308 ± 0.0401 3628.239 ± 287.5174 3312.303 ± 44.2391 3213.298 – 0.0067

 596 Page 22 of 35 Cluster Computing (2025) 28:596

123

deviation of 25 independent runs of the SD algorithm with

the top three CEC 2020 algorithms has been done. These

algorithms are SASS [89], COLSHADE [90], and sCMA-

gES [91], respectively.

Tables 12, 13, 14, 15, 16 and 17 show the results

obtained from the SD algorithm compared to the top three

CEC 2020 algorithms. As it is clear, the SD algorithm can

easily compete with the superior CEC 2020 algorithm. The

tables show that this algorithm is successful in solving a

large number of these problems.

8 Solving classical engineering problems

Engineering problems usually have several equality and

inequality constraints [92]. To solve these problems, a

constraint management method is needed. One of the main

challenges in constraint management is the direct effects of

the fitness function on the position of search agents. In the

SD algorithm, there is no direct relationship between the

search agents, which are photons, and the objective

function. Therefore, it is easy to handle and manage con-

straints by creating appropriate constraints and penalty

functions. In the SD algorithm, if any photon violates the

constraint, it is not used in the next iteration. It is necessary

to mention that simple and scalar penalty functions have

been used in this paper.

8.1 Gear train design problem

The gear train design is one of the real-world discrete

problems. The goal of this problem is to achieve the

optimal tooth value for the four gears of the train so that the

gear ratio is minimized. Due to the discreteness of the

problem, the search factors are rounded before evaluating

the fitness function. Figure 11 shows the parameters and

variables of the problem. In this figure, the parameters

show the number of teeth of the gears. The number of

variables in the problem is four variables. This problem has

no constraints. Full details of this problem can be found in

Appendix A. Table 18 shows the results obtained from the

algorithms.

8.2 Pressure vessel design problem

A pressure vessel is a closed container in which fluids are

stored. The design of the vessel is such that the chamber

pressure is different from the ambient pressure. Optimum

design and construction of these vessels are very important

because changes in the pressure difference parameter may

cause vessel destruction and explosion. The main objective

of this problem is to minimize the cost of materials,

forming, and welding of a pressure vessel. Figure 12 shows

the parameters and variables of the problem. The variables

of this problem are shell thickness (Ts), head thickness

(Th), inner radius (R), and cylinder cross-section length

excluding the head (L). Details are available in Appendix

A. Table 19 shows the results obtained from the

algorithms.

8.3 Speed reducer problem

An important part of the gearbox of mechanical systems is

the speed reducer. The speed reducer design problem has

seven design variables, so the algorithms to solve it face

many challenges. The objective is to minimize the weight

of the speed reducer in such a way that the constraints are

taken into account. The constraints of the problem are the

bending stress of the gear teeth, the surface stress, the

transverse deviation of the shaft, and the stresses in the

shafts. The variables of this problem are the width of the

face (b), the module of the teeth (m), the number of teeth in

the pinion (z), the length of the first shaft between the

Table 18 The results obtained from the algorithms in solving the gear

train design problem

Algorithm Optimum variables Cost

nA nB nC nD Best Mean Std

BBO 53 13 30 51 2.27e-11 1.83e-07 2.44e-07

DE 53 14 30 50 2.11e-11 1.81e-07 2.76e-07

GA 53 13 30 51 2.30e-11 1.80e-07 3.34e-07

GJO 49 16 19 43 1.38e-12 4.47e-08 4.42e-08

GPC 49 19 16 43 2.70e-12 2.01e-09 2.35e-09

GWO 19 16 44 49 2.78e-11 3.18e-08 3.11e-08

IWO 33 15 13 40 2.15e-08 4.65e-06 3.87e-06

PSO 43 16 19 49 2.70e-12 3.16e-09 5.26e-09

TLBO 43 16 19 49 2.70e-12 3.17e-09 4.94e-09

WSO 33 14 17 50 1.08e-09 2.74e-08 1.16e-07

SDA 49 16 19 43 2.70e-12 1.78e-09 5.05e-09

Fig. 11 Parameters and variables of the gear train design problem

Cluster Computing (2025) 28:596 Page 23 of 35 596

123

bearings (l1), the length of the second shaft between the

bearings (l2), the diameter of the first shaft (d1) and the

diameter of the second shaft (d2). Figure 13 shows the

parameters and variables of the problem. See the details of

this problem in Appendix A. Table 20 shows the results

obtained from the algorithms.

8.4 Tension/compression spring design problem

The tension/compression spring design problem is a con-

tinuous constrained optimization problem. The goal of this

problem is to minimize the weight of the tension/com-

pression spring. The variables of the problem are wire

diameter (d), average coil diameter (D), and number of

active coils (N). Figure 14 shows the parameters and

variables of the problem. The conditions and details of this

problem can be seen in Appendix A. Table 21 shows the

results obtained from the algorithms.

8.5 Three-bar truss design problem

A structure consisting of several members, all of which are

connected with pins, is called a truss. There is only force in

the truss because there are no torque joints in it. The pur-

pose of truss design is to minimize the weight of the truss.

For this paper, the design of the three-bar truss is consid-

ered. One of the main challenges of this issue is the limited

search space and the difficulty of searching in this limited

Table 19 The results obtained

from the algorithms in solving

the pressure vessel design

problem

Algorithm Optimum variables Cost

Ts Th R L Best Mean Std

BBO 0.8758 0.4330 45.3805 139.8165 6074.7532 6497.4932 342.1000

DE 1.0000 1.0000 48.0610 155.8371 10,215.6706 12,946.8820 773.5101

GA 1.0357 0.5128 52.2626 81.4099 6622.3850 7315.4543 591.3064

GJO 0.7863 0.4153 40.6946 195.4049 5996.9073 6697.4790 533.2893

GPC 0.8090 0.3999 41.9208 178.8500 5940.3298 6196.5115 266.3042

GWO 3.5207 5.9053 84.6510 31.0138 Infeasible Infeasible Infeasible

IWO 0.8063 0.3986 41.7704 180.7540 5936.4976 17,635.1938 9259.0283

PSO 0.8669 0.4285 44.9196 144.5550 6055.0596 6241.7073 238.7148

TLBO 0.7781 0.3846 40.3196 199.9999 5885.3352 5995.9059 148.0351

WSO 0.7781 0.3846 40.3199 199.9957 5885.3622 6002.0570 148.9857

SD 0.7789 0.3852 40.3590 199.4544 5887.3137 5887.3137 9.25e-13

Fig. 12 Parameters and variables of the pressure vessel design

problem

Fig. 13 Parameters and variables of the speed reducer problem

Fig. 14 Parameters and variables of the tension/compression spring

design problem

 596 Page 24 of 35 Cluster Computing (2025) 28:596

123

space. Constraints of the problem include stress, deflection,

and buckling. Figure 15 shows the parameters and vari-

ables of the problem. Appendix A describes this problem in

detail. Table 22 shows the results obtained from the

algorithms.

8.6 Welded beam design problem

The main goal in the problem of welding beam design is to

reduce the cost of welding beam fabrication. The mini-

mization of construction cost is influenced by shear stress

(s), bending stress in the beam (h), buckling load on the bar

(Pc), end deflection of the beam (d), and side constraints.

The variables of the problem are weld thickness (h), bar

thickness (b), bar height (t), and length of the part attached

to the bar (l). Figure 16 shows the parameters and variables

of the problem. Details of this problem can be found in

Appendix A. Table 23 shows the results obtained from the

algorithms.

Table 20 The results obtained from the algorithms in solving the speed reducer problem

Algorithm Optimum variables Cost

b m z l1 l2 d1 d2 Best Mean Std

BBO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4818 2994.5004 0.0220

DE 3.2727 0.6035 22.9540 8.0571 8.0425 3.5267 5.4830 3544.5543 Infeasible Infeasible

GA 5.1723 0.7083 12.3816 6.9443 7.7533 3.3565 5.3208 2664.9310 2702.1011 28.5816

GJO 3.5015 0.7000 17.0000 7.3301 8.1154 3.3507 5.2947 3009.4097 3028.5445 8.6294

GPC 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4719 2994.6103 0.69200

GWO 3.5615 0.7102 24.6215 7.8397 7.9499 3.6914 5.4324 4921.2157 Infeasible Infeasible

IWO 3.5003 0.7000 17.0000 7.4896 7.7600 3.3513 5.2869 2997.6934 3000.9944 3.1554

PSO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4711 2994.4711 1.31e-05

TLBO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4711 2996.9166 7.7333

WSO 3.5001 0.7000 17.0001 7.3000 7.7160 3.3502 5.2866 2994.6501 3003.9609 20.423

SD 3.5000 0.7000 17.0000 7.4763 7.7405 3.3544 5.2867 2997.7382 2997.7382 1.38e-12

Table 21 The results obtained

from the algorithms in solving

tension/compression spring

design problem

Algorithm Optimum variables Cost

d D N Best Mean Std

BBO 0.053925 0.41266 8.6376 0.012765 Infeasible Infeasible

DE 0.053592 0.40311 9.4557 0.013263 0.014330 0.00089

GA 0.055078 0.41964 8.9401 0.013927 Infeasible Infeasible

GJO 0.050000 0.31709 14.0845 0.012751 0.012860 0.00021

GPC 0.051480 0.35187 11.5784 0.012666 0.012724 7.99e-05

GWO 0.065054 0.66382 8.6975 0.030052 Infeasible Infeasible

IWO 0.050000 0.31715 14.0671 0.012739 0.012894 0.00014

PSO 0.051968 0.36346 10.9039 0.012667 0.013471 0.00112

TLBO 0.051775 0.35878 11.1695 0.012666 0.012705 4.67e-05

WSO 0.051686 0.35665 11.2929 0.012665 0.012691 5.54e-05

SD 0.050615 0.33142 12.9423 0.012687 0.012687 7.05e-18

Fig. 15 Parameters and variables of the three-bar truss design

problem

Cluster Computing (2025) 28:596 Page 25 of 35 596

123

9 Solving dynamic load-balancing
as a specific application

Load-balancing is a method of evenly distributing network

traffic among the resources that support an application.

Modern applications must process millions of users

simultaneously and return the correct text, video, images,

and other data to each user in a fast and reliable manner. To

handle high volumes of traffic, many applications have

multiple origin servers with duplicate data. A load balancer

is a device that sits between the user and the server group

and acts as an invisible facilitator. It also ensures that all

source servers are used equally [93]. Dynamic load-bal-

ancing is a method used in computing to distribute work-

loads evenly across a network or computing environment.

Unlike static load-balancing, which assigns tasks based on

predefined rules, dynamic load-balancing continuously

monitors the current load and performance of each server

or node in real-time. This allows the system to adaptively

allocate incoming tasks based on the current state of

resources, maximizing throughput and minimizing

response times while avoiding overload on any single

resource. Figure 17 provides a visual perception of the

load-balancing.

Dynamic load-balancing is essential for maintaining

efficient operations in modern computing environments by

allowing systems to respond quickly to changing demands.

In addition, dynamic load-balancing is particularly bene-

ficial in scenarios with high traffic volumes, complex net-

works with varying server capacities, and environments

where workloads can change suddenly. It is widely used in

cluster computing and data centers to ensure optimal per-

formance and resource utilization. Cluster computing

Table 22 The results obtained from the algorithms in solving three-

bar truss design problem

Algorithm Optimum variables Cost

A1 A2 Best Mean Std

BBO 0.79137 0.40068 263.9020 266.2802 2.9907

DE 0.78871 0.40814 263.8960 263.8972 0.0023

GA 0.78875 0.40804 263.8967 264.9977 1.4771

GJO 0.78708 0.41284 263.9040 265.8202 5.9811

GPC 0.78875 0.40804 263.8960 263.9000 0.0071

GWO 0.78760 0.41134 263.9018 267.7010 7.9804

IWO 0.78817 0.40967 263.8963 263.8989 0.0031

PSO 0.78877 0.40798 263.8960 263.9027 0.0121

TLBO 0.78877 0.40799 263.8960 263.8960 7.94e-05

WSO 0.78868 0.40825 263.8960 263.8960 5.97e-12

SD 0.78908 0.40711 263.8960 263.8960 1.15e-13

Table 23 The results obtained

from the algorithms in solving

the welded beam design

problem

Algorithm Optimum variables Cost

h l t b Best Mean Std

BBO 0.28672 2.7052 7.6193 0.28939 2.0178 2.6443 0.33052

DE 0.22223 4.1247 7.7114 0.30368 2.2670 3.0980 0.63903

GA 0.18889 5.4037 6.6958 0.38090 2.5939 3.1556 0.40397

GJO 0.20396 3.5044 9.0529 0.20566 1.7290 1.7361 0.00720

GPC 0.20573 3.4705 9.0366 0.20573 1.7249 1.7710 0.10220

GWO 0.24097 5.2566 8.1159 0.35853 3.0329 Infeasible Infeasible

IWO 0.19782 3.6581 9.0192 0.20658 1.7409 1.8615 0.13141

PSO 0.20573 3.4705 9.0366 0.20573 1.7249 1.9234 0.36908

TLBO 0.20573 3.4705 9.0366 0.20573 1.7249 1.7249 6.64e-10

WSO 0.20573 3.4705 9.0366 0.20573 1.7249 1.7253 0.00139

SD 0.20571 3.4708 9.0371 0.20573 1.7249 1.7249 6.77e-16

Fig. 16 Parameters and variables of the welded beam design problem

 596 Page 26 of 35 Cluster Computing (2025) 28:596

123

represents a paradigm that employs a network of inter-

connected computing entities (nodes) to function cohe-

sively as a singular system, with the principal objective of

augmenting computational capacity and operational effi-

ciency [94]. In contemporary discourse, the incorporation

of metaheuristic algorithms within the realm of cluster

computing has garnered significant attention, particularly

in addressing complex optimization challenges, including

those pertinent to clustering endeavors. The application of

metaheuristics can be tailored for parallel execution within

cluster computing environments [95]. Several metaheuris-

tic algorithms have been proposed to address the com-

plexities of load-balancing in cluster computing

environments. These algorithms leverage nature-inspired

techniques to optimize resource allocation and improve

system performance. PSO [96] is effective in optimizing

load distribution by dynamically adjusting the allocation of

tasks to nodes based on their performance. ACO [97]

excels in finding optimal paths for task allocation, helping

to minimize response times and improve resource utiliza-

tion. GA [98] employs evolutionary principles such as

selection, crossover, and mutation to explore the solution

space for optimal task distribution, making it suitable for

complex load-balancing scenarios. ABC [99] is used for

efficient resource allocation by exploring various solutions

and selecting the best ones based on their fitness. BA [100]

is effective in navigating through solution spaces to

achieve balanced loads across resources. WOA [101]

focuses on finding optimal solutions through a balance of

exploration and exploitation, making it adaptable for

dynamic load-balancing. SA [102] can also lead to better

overall load distribution. These algorithms have been

shown to effectively tackle the challenges associated with

load-balancing in cloud computing environments by opti-

mizing performance metrics such as makespan time,

response time, and resource utilization.

In this section, a specific application of the proposed SD

algorithm in solving the dynamic load-balancing is

presented, which is significantly different from other

methods in terms of performance. Clusters typically consist

of heterogeneous resources with varying capabilities.

Designing a metaheuristic algorithm that effectively allo-

cates tasks while considering these differences is complex

and requires a nuanced understanding of each resource’s

performance characteristics. The complexity of load-bal-

ancing problems often results in a vast solution space,

making it difficult to identify optimal solutions efficiently.

This complexity can lead to longer computation times, as

the algorithm may struggle to explore all potential alloca-

tions effectively. Cluster environments experience fluctu-

ating workloads that can change rapidly. Adapting to these

dynamic conditions while maintaining an optimal load

distribution is a major challenge, as the system must con-

tinuously monitor and adjust allocations in real-time. In

cluster computing environments, nodes may fail or become

unavailable unexpectedly [103]. Ensuring that SD load-

balancing strategies can adapt to such failures without

significant performance impacts is crucial for maintaining

service continuity. As clusters grow in size and complexity,

ensuring that the SD load-balancing method scales effec-

tively becomes increasingly challenging. The algorithm

must handle a larger number of nodes and tasks without

significant performance degradation. SD algorithm may

excel in various performance metrics, such as makespan,

response time, and resource utilization. However, opti-

mizing for one metric often adversely affects another,

creating trade-offs that must be carefully managed. Inte-

grating the SD algorithm into existing cluster infrastruc-

tures can be complex and resource-intensive.

To evaluate the performance in this experiment, the SD

algorithm has been compared with the 10 selected algo-

rithms for the competition mentioned in Sect. 4. For this

purpose, the number of population is considered 10 for all

algorithms. The Number of Function Evaluations (NFE) is

also considered to be 1000. We generated random datasets

to conduct experiments. So that the load capacity is 1000

per node. Each member of the population represents a node

in the network. So there are 10 nodes. Here, the objective

function is to calculate the degree of imbalance in the

network which through the following equation is obtained,

imbalance ¼ node� average loadj j ð12Þ

where the average load is also obtained through,

average load ¼
P

tasks

nodes
ð13Þ

The number of tasks is considered to be 500, 5000,

50,000 and 500,000 respectively. Each algorithm is run 30

times independently and according to the objective func-

tion, the maximum average and standard deviation related

to the response time and makespan are recorded. Makespan

Fig. 17 Visual perception of the load-balancing

Cluster Computing (2025) 28:596 Page 27 of 35 596

123

specifies the completion time of processing of all tasks in

the made schedule. The lower this value means, the algo-

rithm can process and deliver jobs faster. Table 24 shows

the results of the experiments and comparisons of the SD

algorithm with competing algorithms.

As it is clear from the table, the SD algorithm has per-

formed better than other competing algorithms in terms of

response time and makespan. This algorithm also performs

well in load distribution. Figure 18 shows the load distri-

bution at iteration 1, 5, and 10 of the algorithm. The load

distribution is done quickly and this shows the robustness

and good efficiency of the SD algorithm.

By considering both task execution time and system

resources, SD can significantly reduce load imbalances

compared to static methods. SD’s inherent mechanism

allows it to explore multiple solutions simultaneously,

potentially leading to better overall system performance.

The algorithm can dynamically adjust to changes in

workload, making it effective in environments where

demand can fluctuate unpredictably. While SD offers

Table 24 Makespan and response time related to SD and other competing algorithms for the dynamic load-balancing

Algorithm Criteria Number of tasks

500 5000 50,000 500,000

BBO Makespan 551.21 ± 13.2562 5517.55 ± 47.6514 56,001.84 ± 814.2513 568,542.54 ± 997.5295

Response Time 55.3465 ± 2.5654 104.2336 ± 3.2325 104.6874 ± 3.2455 104.5645 ± 3.0254

DE Makespan 550.14 ± 13.1456 5504.52 ± 49.5514 55,857.67 ± 714.5495 559,756.94 ± 785.5246

Response Time 55.0015 ± 2.4658 104.1245 ± 3.1246 104.3245 ± 3.0014 104.4614 ± 3.0144

GA Makespan 550.98 ± 14.6285 5497.52 ± 48.6546 54,987.62 ± 778.2565 550,095.92 ± 875.2548

Response Time 54.9687 ± 2.1589 104.3254 ± 3.0215 104.6587 ± 3.3325 105.0021 ± 3.6547

GJO Makespan 540.95 ± 17.2516 5440.17 ± 49.5254 54,361.84 ± 312.5844 534,586.48 ± 586.2145

Response Time 54.0056 ± 1.9986 100.5589 ± 2.0058 101.0122 ± 1.2564 101.2122 ± 1.3254

GPC Makespan 526.11 ± 13.0788 5263.26 ± 37.7818 52,510.27 – 128.3241 525,010.38 ± 424.7551

Response Time 52.4062 – 1.4938 99.9994 ± 0.0098 99.9990 ± 0.0012 99.9946 ± 0.0057

GWO Makespan 544.69 ± 19.2565 5489.65 ± 55.6598 54,411.77 ± 309.4971 539,961.19 ± 459.6365

Response Time 54.1458 ± 2.0156 100.9854 ± 2.9548 101.2154 ± 2.7659 101.3554 ± 2.6595

IWO Makespan 549.48 ± 21.9655 5500.96 ± 54.6593 55,023.95 ± 361.5656 548,755.88 ± 485.6918

Response Time 54.7565 ± 2.9654 103.2656 ± 3.0254 103.8996 ± 2.6695 103.5887 ± 3.0023

PSO Makespan 543.95 ± 23.5649 5449.63 ± 51.6695 54,833.84 ± 311.2558 544,339.99 ± 447.6596

Response Time 53.8993 ± 2.3625 100.5132 ± 2.3659 100.8996 ± 2.8996 101.4256 ± 2.6654

TLBO Makespan 537.61 ± 18.2568 5332.32 ± 51.2563 54,251.87 ± 211.5362 533,251.24 ± 632.2112

Response Time 53.8456 ± 1.9865 99.9998 ± 0.0008 99.9999 ± 0.0002 99.9989 ± 0.0125

WSO Makespan 545.25 ± 19.6698 5511.64 ± 50.2121 54,445.36 ± 308.3368 538,494.33 ± 605.3791

Response Time 54.9895 ± 2.3659 101.2265 ± 2.6698 102.9856 ± 2.6969 102.7858 ± 2.6524

SD Makespan 518.44 – 15.0279 5262.69 – 36.8927 52,510.27 – 149.7220 524,997.88 – 400.0256

Response Time 52.7737 ± 1.7041 99.9970 – 0.0013 99.4165 – 0.0014 99.4369 – 0.0013

Fig. 18 Performance in load distribution at iteration 1, 5, and 10, respectively (based on one of 30 independent runs)

 596 Page 28 of 35 Cluster Computing (2025) 28:596

123

significant advantages in adaptability and optimization, its

complexity may introduce higher computational overhead

compared to simpler algorithms like Round Robin. Effec-

tive implementation of SD requires careful tuning of

parameters and may necessitate more sophisticated moni-

toring tools. While SD-based load balancing provides

enhanced adaptability and optimization for dynamic envi-

ronments, traditional algorithms like Least Connections

offer simplicity and lower overhead but may struggle with

uneven workloads. The choice between these approaches

depends on specific use cases, system requirements, and

performance goals. Figure 19 compares load distribution

between the SD algorithm and common load-balancing

methods. As the figure shows, the load distribution in the

SD algorithm is more balanced than the common methods.

Tables 25 and 26 show the comparison of the SD algorithm

with common methods and traditional methods,

respectively.

The intricacies of load-balancing issues are frequently

classified as NP-hard, thereby rendering the identification

of optimal resolutions within practical temporal constraints

exceedingly challenging. SD offers an approach capable of

swiftly generating satisfactory solutions, even in complex

contexts. In general, the advantages of SD in solving the

load-balancing problem are summarized in the following

cases:

1. Adaptability and flexibility: The SD algorithm exhibits

a remarkable capacity for adaptation within dynamic

environments. This inherent flexibility facilitates the

modification of load-balancing strategies in response to

fluctuations in workloads and resource availability, a

critical requirement in cluster computing contexts

where conditions may change rapidly.

2. Exploration and exploitation balance: The SD algo-

rithm proficiently reconciles exploration (the pursuit of

new regions within the solution space) and exploitation

(the refinement of already established effective solu-

tions). This attitude is essential for the identification of

optimal or near-optimal solutions within intricate load-

balancing challenges.

3. Domain-agnostic nature: The SD algorithm is broadly

applicable across a multitude of domains, extending

beyond the realm of computing, thereby establishing it

as a versatile tool that can be tailored to various system

architectures and characteristics.

Table 25 Comparison SD with common load-balancing algorithms

Feature Algorithm

Round robin Weighted RR Least connections Resource-based SD load-balancing

Nature Static Static with weights Dynamic Dynamic Dynamic and adaptive

Task

Distribution

Evenly distributes

tasks

Distributes based on

assigned weights

Routes to the least

busy server

Considers real-time

resource usage

Optimizes based on fitness

values

Scalability Simple but can lead

to imbalances

Better scalability with

weighted nodes

Good scalability,

especially under load

Excellent scalability

based on metrics

Highly scalable; adapts to

workload changes

Complexity Simple to

implement

Moderate complexity

due to weight

management

Moderate complexity;

needs monitoring

High complexity;

requires continuous

monitoring

More complex due to

optimization calculations

Performance May underperform

if nodes are

unequal

Better performance

with heterogeneous

nodes

Efficient under varying

connection loads

High performance by

optimizing resource

use

Can achieve optimal

performance through

optimization

Overhead Low overhead Moderate overhead

from weight

calculations

Moderate overhead for

monitoring

connections

High overhead from

continuous

monitoring

Higher computational

overhead due to

optimization

Fig. 19 Comparison of common load-balancing algorithms with SD

Cluster Computing (2025) 28:596 Page 29 of 35 596

123

10 Conclusions

In this paper, a novel lightweight algorithm based on

physics was proposed called the Star Death (SD) algorithm.

The aim was to provide an efficient, lightweight, uncom-

plicated, simple, and robust algorithm for solving various

simple and complex problems. This algorithm demon-

strates effectiveness in solving real-world problems,

maintaining diversity, and avoiding local optima. Its resi-

lience and effectiveness make it a powerful tool for opti-

mization, especially in engineering challenges. In this

algorithm, the search and optimization process is carried

out with the inspiration of the process of star death and

using two agents, elite photon and central photon. An elite

strategy is applied, with its exploration range dynamically

adjusted for better solutions. Center-based sampling in the

SD algorithm is beneficial throughout the optimization

process. The method emphasizes the center point’s prox-

imity to solutions, enhancing the optimizer’s effectiveness.

Empirical evidence supports the role of center-based

sampling in improving convergence rates for high-dimen-

sional problems. Parameter interactions in the SD Algo-

rithm help prevent multiple local optima in the parameter

space, ensuring solution quality. The SD algorithm adjusts

parameters adaptively to enhance clarity and understanding

of the parameter space. This algorithm can be used as an

effective optimization method in many problems and fields

of knowledge, including engineering sciences. Experiments

showed that the algorithm can solve problems with high

dimensions. The results obtained from the application of

the algorithm on real-world problems and classic engi-

neering problems showed that the presented algorithm is

fully capable. As a specific application in solving the

dynamic load-balancing in cluster computing, it was

observed that the SD algorithm is able to deal with the

problem. Future research directions for improving meta-

heuristic load-balancing methods in cluster computing

environments can focus on several key areas. Combining

different metaheuristic algorithms can enhance

performance by leveraging the strengths of each method.

Developing algorithms that can dynamically adapt to

varying workloads and resource availability is crucial.

Future research should explore real-time adjustment

mechanisms that allow load-balancing strategies to respond

effectively to changes in the cluster environment. Load-

balancing often involves optimizing multiple conflicting

objectives, such as minimizing response time while maxi-

mizing resource utilization. Research can focus on multi-

objective optimization methods that effectively balance

these trade-offs.

Appendix A

In this appendix, six classic engineering problems are

detailed.

Gear train design problem

Consider x!¼ x1x2x3x4½ � ¼ ½nAnBnCnD�, the following

function should be minimized,

f x~ð Þ ¼ 1

6:931
� x3x2

x1x4

� 	2

ð14Þ

Also, the range of changes of variables are

12� x1; x2; x3; x4 � 60.

Pressure vessel design problem

Consider x!¼ x1x2x3x4½ � ¼ ½TsThRL�, the following func-

tion should be minimized,

f x~ð Þ ¼ 0:6224x1x2x3 þ 1:7781x2x
2
3 þ 3:1661x2

1x4

þ 19:84x2
1x3 ð15Þ

subject to,

Table 26 Comparison SD with traditional dynamic load-balancing algorithms

Feature/Algorithm SD load-balancing Traditional dynamic algorithms

Nature Metaheuristic, adaptive Heuristic or rule-based

Task distribution Optimizes based on real-time metrics Distributes tasks based on predefined rules

Scalability Highly scalable; adapts to workload changes Varies; may struggle with high variability

Complexity More complex due to optimization calculations Generally simpler and easier to implement

Overhead Higher computational overhead due to optimization Lower overhead; often less resource-intensive

Performance Can achieve optimal performance through optimization Performance depends on the algorithm used

Energy efficiency Improved energy consumption through optimized load distribution May not specifically address energy efficiency

 596 Page 30 of 35 Cluster Computing (2025) 28:596

123

g1 x~ð Þ ¼ �x1 þ 0:0193x3 � 0
g2 x~ð Þ ¼ �x3 þ 0:00954x3 � 0

g3 x~ð Þ ¼ �px2
3x4 �

4

3
px3

3 þ 1296000� 0

g4 x~ð Þ ¼ x4 � 240� 0

8>>><
>>>:

ð16Þ

Also, the range of changes of variables are 0� x1 � 99,

0� x2 � 99, 10� x3 � 200, and 10� x4 � 200.

Speed reducer problem

Consider x!¼ x1x2x3x4x5x6x7½ � ¼ ½bmzl1l2d1d2�, the fol-

lowing function should be minimized,

f x~ð Þ ¼ 0:7854x1x
2
2ð3:33x2

3 þ 14:9334x3 � 43:0934

� 1508x1 x2
6 þ x2

7

� �
þ 7:4777 x3

6 þ x3
4

� �
þ 0:7854 x4x

2
6 þ x5x

2
7

� �
ð17Þ

subject to,

g1 x~ð Þ ¼ 27

x1x
2
2x3

� 1� 0

g2 x~ð Þ ¼ 397:5

x1x
2
2x

2
3

� 1� 0

g3 x~ð Þ ¼ 1:93x3
4

x2x
4
6x3

� 1� 0

g4 x~ð Þ ¼ 1:93x3
5

x2x
4
7x3

� 1� 0

g5 x~ð Þ ¼
745 x4

x2x3

� �2

þ16:9 � 106

�
1
2

110x3
6

� 1� 0

g6 x~ð Þ ¼
745 x5

x2x3

� �2

þ157:5 � 106

�
1
2

85x3
7

� 1� 0

g7 x~ð Þ ¼ x2x3

40
� 1� 0

g8 x~ð Þ ¼ 5x2

x1

� 1� 0

g9 x~ð Þ ¼ x1

12x2

� 1� 0

g10 x~ð Þ ¼ 1:5x6 þ 1:9

x4

� 1� 0

g11 x~ð Þ ¼ 1:1x7 þ 1:9

x5

� 1� 0

8>>><
>>>:

ð18Þ

Also, the range of changes of variables are

2:6� x1 � 3:6, 0:7� x2 � 0:8, 17� x3 � 28, 7:3� x4 � 8:3,

7:3� x5 � 8:3, 2:9� x6 � 3:9, and 5� x7 � 5:5.

Tension/compression spring design problem

Consider x~¼ x1x2x3½ � ¼ dDN½ �, the following function

should be minimized,

f x~ð Þ ¼ x3 þ 2ð Þx2x
2
1 ð19Þ

subject to,

g1 x~ð Þ ¼ 1 � x2
1x3

71785x4
1

� 0

g2 x~ð Þ ¼ 4x2
2 � x1x2

12566 x2x
3
1 � x4

1

� �þ 1

5108x2
1

� 0

g3 x~ð Þ ¼ 1 � 140:45x1

x2
2x3

� 0

g4 x~ð Þ ¼ x1 þ x2

1:5
� 1� 0

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

Also, the range of changes of variables are

0:05� x1 � 2, 0:25� x2 � 1:3, and 2� x3 � 15.

Three-bar truss design problem

Consider x~¼ x1x2½ � ¼ A1A2½ �, the following function

should be minimized,

f x~ð Þ ¼ 2
ffiffiffi
2

p
x1 þ x2

� �
� l ð21Þ

subject to,

g1 x~ð Þ ¼
ffiffiffi
2

p
x1 þ x2ffiffiffi

2
p

x2
1 þ 2x1x2

P� r� 0

g2 x~ð Þ ¼ x2ffiffiffi
2

p
x2

1 þ 2x1x2

P� r� 0

g2 x~ð Þ ¼ 1ffiffiffi
2

p
x2 þ x1

P� r� 0

8>>>>>><
>>>>>>:

ð22Þ

where l ¼ 100cm, P ¼ 2kN=cm2, and r ¼ 2kN=cm2. Also,

the range of changes of variables are 0� x1; x2 � 1.

Welded beam design problem

Consider x~¼ x1x2x3x4½ � ¼ hltb½ �, the following function

should be minimized,

f x~ð Þ ¼ 1:10471x2
1x2 þ 0:04811x3x4x3 14 þ x2ð Þ ð23Þ

subject to,

g1 x~ð Þ ¼ s x~ð Þ � smax � 0
g2 x~ð Þ ¼ r x~ð Þ � rmax � 0
g3 x~ð Þ ¼ d x~ð Þ � dmax � 0
g4 x~ð Þ ¼ x1 � x4 � 0
g5 x~ð Þ ¼ P� Pc x~ð Þ� 0
g6 x~ð Þ ¼ 0:125 � x1 � 0

g7 x~ð Þ ¼ 1:10471x2
1 þ 0:04811x3x4 14 þ x2ð Þ � 5� 0

8>>>>>>><
>>>>>>>:

ð24Þ

where s x~ð Þ ¼
ffi
s0ð Þ2þ2s0s00 x2

2R þ s00ð Þ2
q

in such a way that

s0 ¼ Pffiffi
2

p
x1x2

and s00 ¼ P Lþx2
2ð ÞR

J where in R ¼
ffi
x2

2

4
þ x1þx3

2

� �2
q

and J ¼ 2
ffiffiffi
2

p
x1x2

x2
2

4
þ x1þx3

2

� �2
h in o

. Also, we have r x~ð Þ ¼

Cluster Computing (2025) 28:596 Page 31 of 35 596

123

6PL
x4x

2
3

and d x~ð Þ ¼ 6PL3

Ex2
3
x4

. In addition, we have Pc x~ð Þ ¼

4:013E

ffiffiffiffiffiffi
x2
3
x6
4

36

q

L2 1 � x3

2L

ffiffiffiffiffi
E

4G

q� �
where P ¼ 6000lb, L ¼ 14in,

dmax ¼ 0:25in, E ¼ 3 � 106psi, G ¼ 12 � 106 psi,

smax ¼ 13600psi, and rmax ¼ 30000 psi. Moreover, the

range of changes of variables are 0:1� x1 � 2,

0:1� x2 � 10, 0:1� x3 � 10, 0:1� x4 � 2.

Author’s contributions Sasan Harifi: Conceptualization, Methodol-

ogy, Resources, Validation, Visualization, Formal analysis, Investi-

gation, Data Curation, Writing—Original Draft, Writing—Review &

Editing, Project administration. Reza Eghbali: Conceptualization,

Methodology, Software, Writing—Review & Editing. Seyed Mohsen

Mirhosseini: Supervision, Writing—Review & Editing, Project

administration.

Data availability statement No datasets were generated or analysed

during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Rao, S.S.: Engineering optimization: theory and practice. Wiley,

New York (2019)

2. Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y.: Meta-

heuristic research: a comprehensive survey. Artif. Intell. Rev.

52, 2191–2233 (2019)

3. Khanduja, N., Bhushan, B.: Recent advances and application of

metaheuristic algorithms: a survey (2014–2020). Metaheur.

Evolut. Comput. Algor. Appl., pp 207–228 (2021).

4. Harifi, S., Mohammadzadeh, J., Khalilian, M., Ebrahimnejad, S.:

Giza Pyramids Construction: an ancient-inspired metaheuristic

algorithm for optimization. Evol. Intel. 14, 1743–1761 (2021)

5. Slowik, A., Kwasnicka, H.: Evolutionary algorithms and their

applications to engineering problems. Neural Comput. Appl. 32,

12363–12379 (2020)

6. Holland, J.H.: Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and

artificial intelligence. MIT Press, Cambridge (1992)

7. Neri, F., Cotta, C.: Memetic algorithms and memetic computing

optimization: a literature review. Swarm Evol. Comput. 2, 1–14

(2012)

8. Storn, R., Price, K.: Differential evolution–a simple and efficient

heuristic for global optimization over continuous spaces.

J. Global Optim. 11, 341–359 (1997)

9. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic

optimization algorithm: harmony search. SIMULATION 76(2),

60–68 (2001)

10. De Castro, L.N., Von Zuben, F.J.: Learning and optimization

using the clonal selection principle. IEEE Trans. Evol. Comput.

6(3), 239–251 (2002)

11. Civicioglu, P.: Backtracking search optimization algorithm for

numerical optimization problems. Appl. Math. Comput.

219(15), 8121–8144 (2013)

12. Salimi, H.: Stochastic fractal search: a powerful metaheuristic

algorithm. Knowl.-Based Syst. 75, 1–18 (2015)

13. Wu, G.: Across neighborhood search for numerical optimiza-

tion. Inf. Sci. 329, 597–618 (2016)

14. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by

simulated annealing. Science 220(4598), 671–680 (1983)

15. Glover, F.: Tabu search—part I. ORSA J. Comput. 1(3),

190–206 (1989)

16. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Vari-

able neighborhood search, pp. 57–97. Springer, Cham (2019)

17. Balas, E., Vazacopoulos, A.: Guided local search with shifting

bottleneck for job shop scheduling. Manage. Sci. 44(2), 262–275

(1998)

18. Lourenço, H. R., Martin, O. C., Stützle, T.: Iterated local search:

Framework and applications. Handbook of Metaheuristics,

pp 129–168 (2019).

19. Harifi, S., Khalilian, M., Mohammadzadeh, J., Ebrahimnejad, S.:

New generation of metaheuristics by inspiration from ancient.

In: 2020 10th international conference on computer and

knowledge engineering (ICCKE) (pp. 256–261). IEEE, New

York (2020)

20. Guan, Z., Ren, C., Niu, J., Wang, P., Yizi, S.: Great Wall

Construction Algorithm: a novel meta-heuristic algorithm for

engineer problems. Expert Syst. Appl., 120905 (2023).

21. Niu, J., Ren, C., Guan, Z., Cao, Z.: Dujiangyan irrigation system

optimization (DISO): A novel metaheuristic algorithm for dam

safety monitoring. In Structures (Vol. 54, pp. 399–419). Else-

vier, Amsterdam (2023)

22. Adhikari, M., Srirama, S. N., Amgoth, T.: A comprehensive

survey on nature-inspired algorithms and their applications in

edge computing: challenges and future directions. Softw. Pract.

Experience, 52(4), 1004–1034 (2022).

23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In:

Proceedings of ICNN’95-international conference on neural

networks (Vol. 4, pp. 1942–1948). IEEE, New York (1995)

24. Krishnanand, K. N., Ghose, D.: Detection of multiple source

locations using a glowworm metaphor with applications to

collective robotics. In: Proceedings 2005 IEEE Swarm Intelli-

gence Symposium, 2005. SIS 2005. (pp. 84–91). IEEE, New

York (2005)

25. Shah-Hosseini, H.: The intelligent water drops algorithm: a

nature-inspired swarm-based optimization algorithm. Int. J. Bio-

inspired Comput. 1(1–2), 71–79 (2009)

26. He, S., Wu, Q.H., Saunders, J.R.: Group search optimizer: an

optimization algorithm inspired by animal searching behavior.

IEEE Trans. Evol. Comput. 13(5), 973–990 (2009)

27. Oftadeh, R., Mahjoob, M.J., Shariatpanahi, M.: A novel meta-

heuristic optimization algorithm inspired by group hunting of

animals: Hunting search. Comput. Math. Appl. 60(7),

2087–2098 (2010)

28. Duman, E., Uysal, M., Alkaya, A.F.: Migrating birds opti-

mization: a new metaheuristic approach and its performance on

quadratic assignment problem. Inf. Sci. 217, 65–77 (2012)

29. Li, X., Zhang, J., Yin, M.: Animal migration optimization: an

optimization algorithm inspired by animal migration behavior.

Neural Comput. Appl. 24, 1867–1877 (2014)

30. Rahmani, R., Yusof, R.: A new simple, fast and efficient algo-

rithm for global optimization over continuous search-space

problems: radial movement optimization. Appl. Math. Comput.

248, 287–300 (2014)

31. Cuevas, E., González, A., Zaldı́var, D., Pérez-Cisneros, M.: An

optimisation algorithm based on the behaviour of locust swarms.

Int. J. Bio-Inspired Comput. 7(6), 402–407 (2015)

32. Odili, J.B., Kahar, M.N.M., Anwar, S.: African buffalo opti-

mization: a swarm-intelligence technique. Procedia Comput.

Sci. 76, 443–448 (2015)

 596 Page 32 of 35 Cluster Computing (2025) 28:596

123

33. Sun, G., Zhao, R., Lan, Y.: Joint operations algorithm for large-

scale global optimization. Appl. Soft Comput. 38, 1025–1039

(2016)

34. Pierezan, J., Coelho, L. D. S.: Coyote optimization algorithm: a

new metaheuristic for global optimization problems. In: 2018

IEEE congress on evolutionary computation (CEC) (pp. 1–8).

IEEE, New York (2018).

35. Harifi, S., Khalilian, M., Mohammadzadeh, J., Ebrahimnejad, S.:

Emperor Penguins colony: a new metaheuristic algorithm for

optimization. Evol. Intel. 12, 211–226 (2019)

36. Zhang, W., Pan, K., Li, S., Wang, Y.: Special Forces Algorithm:

a novel meta-heuristic method for global optimization. Math.

Comput. Simul. 213, 394–417 (2023)

37. Karaboga, D., Basturk, B.: A powerful and efficient algorithm

for numerical function optimization: artificial bee colony (ABC)

algorithm. J. Global Optim. 39, 459–471 (2007)

38. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization.

IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

39. Yang, X. S.: Firefly algorithms for multimodal optimization. In

International symposium on stochastic algorithms (pp.

169–178). Springer, Berlin (2009).

40. Yang, X. S.: A new metaheuristic bat-inspired algorithm. In

Nature inspired cooperative strategies for optimization (NICSO

2010) (pp. 65–74). Springer, Berlin (2010).

41. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired

optimization algorithm. Commun. Nonlinear Sci. Numer. Simul.

17(12), 4831–4845 (2012)

42. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer.

Adv. Eng. Softw. 69, 46–61 (2014)

43. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-

inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249

(2015)

44. Mirjalili, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98

(2015)

45. Askarzadeh, A.: A novel metaheuristic method for solving

constrained engineering optimization problems: crow search

algorithm. Comput. Struct. 169, 1–12 (2016)

46. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv.

Eng. Softw. 95, 51–67 (2016)

47. Jain, M., Singh, V., Rani, A.: A novel nature-inspired algorithm

for optimization: Squirrel search algorithm. Swarm Evol.

Comput. 44, 148–175 (2019)

48. Azizi, M., Talatahari, S., Gandomi, A.H.: Fire Hawk Optimizer:

a novel metaheuristic algorithm. Artif. Intell. Rev. 56(1),

287–363 (2023)

49. Hamad, R. K., Rashid, T. A.: GOOSE algorithm: A powerful

optimization tool for real-world engineering challenges and

beyond. Evolving Syst., pp 1–26 (2024).

50. Chopra, N., Ansari, M.M.: Golden jackal optimization: a novel

nature-inspired optimizer for engineering applications. Expert

Syst. Appl. 198, 116924 (2022)

51. Braik, M., Hammouri, A., Atwan, J., Al-Betar, M.A., Awadal-

lah, M.A.: White Shark Optimizer: a novel bio-inspired meta-

heuristic algorithm for global optimization problems. Knowl.-

Based Syst. 243, 108457 (2022)

52. Abdel-Basset, M., Mohamed, R., Jameel, M., Abouhawwash,

M.: Spider wasp optimizer: a novel meta-heuristic optimization

algorithm. Artif. Intell. Rev. 56(10), 11675–11738 (2023)

53. Abdollahzadeh, B., Khodadadi, N., Barshandeh, S., Trojovský,

P., Gharehchopogh, F. S., El-kenawy, E. S. M., et al.: Puma

optimizer (PO): a novel metaheuristic optimization algorithm

and its application in machine learning. Cluster Comput.,

pp 1–49 (2024).

54. Han, M., Du, Z., Yuen, K.F., Zhu, H., Li, Y., Yuan, Q.: Walrus

optimizer: A novel nature-inspired metaheuristic algorithm.

Expert Syst. Appl. 239, 122413 (2024)

55. Zervoudakis, K., Tsafarakis, S.: A global optimizer inspired

from the survival strategies of flying foxes. Eng. Comput,

pp 1–34 (2022).

56. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algo-

rithm: an algorithm for optimization inspired by imperialistic

competition. In: 2007 IEEE congress on evolutionary compu-

tation (pp. 4661–4667). Ieee, New York (2007).

57. Simon, D.: Biogeography-based optimization. IEEE Trans.
Evol. Comput. 12(6), 702–713 (2008)

58. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-

based optimization: a novel method for constrained mechanical

design optimization problems. Comput. Aided Des. 43(3),

303–315 (2011)

59. Elsisi, M.: Future search algorithm for optimization. Evol. Intel.

12(1), 21–31 (2019)

60. Askari, Q., Younas, I., Saeed, M.: Political optimizer: a novel

socio-inspired meta-heuristic for global optimization. Knowl.-

Based Syst. 195, 105709 (2020)

61. Askari, Q., Saeed, M., Younas, I.: Heap-based optimizer

inspired by corporate rank hierarchy for global optimization.

Expert Syst. Appl. 161, 113702 (2020)

62. Azizi, M., Baghalzadeh Shishehgarkhaneh, M., Basiri, M.,

Moehler, R.C.: Squid game optimizer (SGO): a novel meta-

heuristic algorithm. Sci. Rep. 13(1), 5373 (2023)

63. Mehrabian, A.R., Lucas, C.: A novel numerical optimization

algorithm inspired from weed colonization. Eco. Inform. 1(4),

355–366 (2006)

64. Ma, L., Hu, K., Zhu, Y., Chen, H., & He, M.: A novel plant root

foraging algorithm for image segmentation problems. Math.

Probl. Eng. 2014(1), 471209 (2014)

65. Yang, X. S.: Flower pollination algorithm for global optimiza-

tion. In International conference on unconventional computing

and natural computation (pp. 240–249). Springer, Berlin (2012).

66. Chandra, S.S., Hareendran S, A.: Phototropic algorithm for

global optimisation problems. Appl. Intell. 51(8), 5965–5977

(2021)

67. Abdelhamid, A.A., Towfek, S.K., Khodadadi, N., Alhussan,

A.A., Khafaga, D.S., Eid, M.M., Ibrahim, A.: Waterwheel plant

algorithm: a novel metaheuristic optimization method. Processes

11(5), 1502 (2023)

68. Hatamlou, A.: Black hole: a new heuristic optimization

approach for data clustering. Inf. Sci. 222, 175–184 (2013)

69. Zheng, Y.J.: Water wave optimization: a new nature-inspired

metaheuristic. Comput. Oper. Res. 55, 1–11 (2015)

70. Shareef, H., Ibrahim, A.A., Mutlag, A.H.: Lightning search

algorithm. Appl. Soft Comput. 36, 315–333 (2015)

71. Abedinpourshotorban, H., Shamsuddin, S.M., Beheshti, Z.,

Jawawi, D.N.: Electromagnetic field optimization: a physics-

inspired metaheuristic optimization algorithm. Swarm Evol.

Comput. 26, 8–22 (2016)

72. Mirjalili, S.: SCA: a sine cosine algorithm for solving opti-

mization problems. Knowl.-Based Syst. 96, 120–133 (2016)

73. Kaveh, A., Dadras, A.: A novel meta-heuristic optimization

algorithm: thermal exchange optimization. Adv. Eng. Softw.

110, 69–84 (2017)

74. Daliri, A., Asghari, A., Azgomi, H., Alimoradi, M.: The water

optimization algorithm: a novel metaheuristic for solving opti-

mization problems. Appl. Intell. 52(15), 17990–18029 (2022)

75. Faramarzi, A., Heidarinejad, M., Stephens, B., Mirjalili, S.:

Equilibrium optimizer: a novel optimization algorithm. Knowl.-

Based Syst. 191, 105190 (2020)

76. Abdel-Basset, M., Mohamed, R., Sallam, K.M., Chakrabortty,

R.K.: Light spectrum optimizer: a novel physics-inspired

metaheuristic optimization algorithm. Mathematics 10(19), 3466

(2022)

Cluster Computing (2025) 28:596 Page 33 of 35 596

123

77. Kundu, R., Chattopadhyay, S., Nag, S., Navarro, M.A., Oliva,

D.: Prism refraction search: a novel physics-based metaheuristic

algorithm. J. Supercomput. 80(8), 10746–10795 (2024)

78. Deng, L., Liu, S.: Snow ablation optimizer: a novel meta-

heuristic technique for numerical optimization and engineering

design. Expert Syst. Appl. 225, 120069 (2023)

79. Zhang, H., San, H., Sun, H., Ding, L., Wu, X.: A novel opti-

mization method: wave search algorithm. J. Supercomput.,

pp 1–36 (2024).

80. Iben, I., Jr.: Stellar evolution within and off the main sequence.

Ann. Rev. Astron. Astrophys. 5(1), 571–626 (1967)

81. Bromm, V., Yoshida, N., Hernquist, L., McKee, C.F.: The for-

mation of the first stars and galaxies. Nature 459(7243), 49–54

(2009)

82. Luhman, K.L.: The formation and early evolution of low-mass

stars and brown dwarfs. Ann. Rev. Astron. Astrophys. 50,

65–106 (2012)

83. Hekker, S., Christensen-Dalsgaard, J.: Giant star seismology.

Astron. Astrophys. Rev. 25, 1–122 (2017)

84. Kwitter, K.B., Henry, R.B.C.: Planetary nebulae: sources of

enlightenment. Publ. Astron. Soc. Pac. 134(1032), 022001

(2022)

85. Saumon, D., Blouin, S., Tremblay, P.E.: Current challenges in

the physics of white dwarf stars. Phys. Rep. 988, 1–63 (2022)

86. Amaro, D., Faraji, S.: Vacuum polarization effects in the

background of a deformed compact object and implications for

photon velocity. Phys. Rev. D 111(4), 045003 (2025)

87. Surjanovic, S., Bingham, D.: Virtual Library of simulation

experiments: test functions and datasets. Retrieved October 23,

2017, from http://www.sfu.ca/*ssurjano (2013)

88. Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N.,

Das, S.: A test-suite of non-convex constrained optimization

problems from the real-world and some baseline results. Swarm

Evol. Comput. 56, 100693 (2020)

89. Kumar, A., Das, S., Zelinka, I.: A self-adaptive spherical search

algorithm for real-world constrained optimization problems. In:

Proceedings of the 2020 genetic and evolutionary computation

conference companion, (pp. 13–14) (2020).

90. Gurrola-Ramos, J., Hernàndez-Aguirre, A., Dalmau-Cedeño, O.:

COLSHADE for real-world single-objective constrained opti-

mization problems. In: 2020 IEEE congress on evolutionary

computation (CEC) (pp. 1–8). IEEE, New York (2020).

91. Kumar, A., Das, S., Zelinka, I.: A modified covariance matrix

adaptation evolution strategy for real-world constrained opti-

mization problems. In: Proceedings of the 2020 Genetic and

Evolutionary Computation Conference Companion (pp. 11–12)

(2020).

92. Harifi, S., Davachi, F., Mohammadi, N., FaridMoham-

madzadegan, S.: Two competitive hybridization approaches

based on combining of Giza Pyramids Construction with Parti-

cle Swarm Optimization for solving global optimization prob-

lems. Intel. Artif. 28(75), 114–139 (2025)

93. Ebneyousef, S., Shirmarz, A.: A taxonomy of load balancing

algorithms and approaches in fog computing: a survey. Clust.

Comput. 26(5), 3187–3208 (2023)

94. Pourghebleh, B., Hayyolalam, V.: A comprehensive and sys-

tematic review of the load balancing mechanisms in the Internet

of Things. Clust. Comput. 23(2), 641–661 (2020)

95. Ghomi, E.J., Rahmani, A.M., Qader, N.N.: Load-balancing

algorithms in cloud computing: a survey. J. Netw. Comput.

Appl. 88, 50–71 (2017)

96. Pradhan, A., Bisoy, S.K.: A novel load balancing technique for

cloud computing platform based on PSO. J. King Saud Univ.-

Comput. Inform. Sci. 34(7), 3988–3995 (2022)

97. Wang, C., Zhang, G., Xu, H., & Chen, H. (2016, November). An

ACO-based link load-balancing algorithm in SDN. In 2016 7th

International Conference on Cloud Computing and Big Data

(CCBD) (pp. 214–218). IEEE, New York.

98. Fu, X., Sun, Y., Wang, H., Li, H.: Task scheduling of cloud

computing based on hybrid particle swarm algorithm and

genetic algorithm. Clust. Comput. 26(5), 2479–2488 (2023)

99. Ullah, A., Nawi, N.M., Uddin, J., Baseer, S., Rashed, A.H.:

Artificial bee colony algorithm used for load balancing in cloud

computing. IAES Int. J. Artif. Intell. 8(2), 156 (2019)

100. Ullah, A., Nawi, N.M., Khan, M.H.: BAT algorithm used for

load balancing purpose in cloud computing: an overview. Int.

J. High Perform. Comput. Networking 16(1), 43–54 (2020)

101. Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., Murphy,

J.: A WOA-based optimization approach for task scheduling in

cloud computing systems. IEEE Syst. J. 14(3), 3117–3128

(2020)

102. Mondal, B., Choudhury, A.: Simulated annealing (SA) based

load balancing strategy for cloud computing. Int. J. Comput. Sci.

Inform. Technol. 6(4), 3307–3312 (2015)

103. Ebadifard, F., Babamir, S.M.: Autonomic task scheduling

algorithm for dynamic workloads through a load balancing

technique for the cloud-computing environment. Clust. Comput.

24, 1075–1101 (2021)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Sasan Harifi received the B.Sc.

degree in computer engineering

from the Islamic Azad Univer-

sity of Karaj, Karaj, Iran, in

2011, the M.Sc. degree in soft-

ware engineering from the Fac-

ulty of Electrical, Computer and

IT Engineering, Islamic Azad

University, Qazvin Branch,

Iran, in 2015, and the Ph.D.

degree in software systems from

the Islamic Azad University of

Karaj, Karaj, Iran, in 2019. He

is currently an Assistant Pro-

fessor at the Department of

Computer Engineering, Islamic Azad University, Karaj, Iran. His

current research interests include optimization algorithms, meta-

heuristic algorithms, swarm intelligence, ancient inspired computing,

nature inspired computing, machine learning, and deep learning. He is

also the first to introduce a novel source of inspiration called

‘‘Ancient-inspired’’ to develop metaheuristic algorithms.

 596 Page 34 of 35 Cluster Computing (2025) 28:596

123

http://www.sfu.ca/~ssurjano

Reza Eghbali received the M.Sc.

degree in computer science

(artificial intelligence) from

Kharazmi University, Tehran,

Iran, in 2017. He is currently

working toward the Ph.D.

degree in computer science (ar-

tificial intelligence) with the

Islamic Azad University of

Karaj, Iran. His research inter-

ests include machine learning

(deep, reinforcement, and fed-

erated learning), metaheuristic

algorithms, multi-agent sys-

tems, and edge computing.

Seyed Mohsen Mirhosseini
received the Ph.D. in computer

engineering from Shahid

Beheshti University. He is

currently an Assistant Professor

at the Faculty of Artificial

Intelligence, Islamic Azad

University, Karaj, Iran. His

research interests include soft-

ware testing, metaheuristic

algorithms, and machine

learning.

Cluster Computing (2025) 28:596 Page 35 of 35 596

123

	Star Death: a novel lightweight metaheuristic algorithm and its application for dynamic load-balancing in cluster computing
	Abstract
	Introduction
	Star death ideology
	Star Death (SD) algorithm
	Experimental results and discussion
	Statistical analysis
	High-dimensional tests
	Analysis of SD on CEC-2020
	Solving classical engineering problems
	Gear train design problem
	Pressure vessel design problem
	Speed reducer problem
	Tension/compression spring design problem
	Three-bar truss design problem
	Welded beam design problem

	Solving dynamic load-balancing as a specific application
	Conclusions
	Appendix A
	Gear train design problem
	Pressure vessel design problem
	Speed reducer problem
	Tension/compression spring design problem
	Three-bar truss design problem
	Welded beam design problem

	Author’s contributions
	Data availability statement
	References

