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Abstract

Optimization is a crucial principle in today’s world, applied in various fields to increase profit and efficiency while
reducing cost and time. However, solving optimization problems can be challenging, especially in dynamic environments
where conditions are constantly changing. In the meantime, metaheuristic methods are effective for solving large and
complex optimization problems. Due to the presentation of several algorithms in the last two decades, each of which has
high complexity and is difficult to understand, providing a lightweight algorithm has become a principle. This paper
proposes a novel lightweight metaheuristic algorithm called the Star Death (SD) algorithm, which is inspired by the
physical process of star death. The proposed algorithm aims to model the exact, regular, and optimal physical process of
star death that can solve various problems. For this purpose, the SD algorithm employs an elite strategy that dynamically
adjusts the range of exploration for better solutions. It also uses center-based sampling that emphasizes the center point’s
proximity to solutions, enhancing the optimizer’s effectiveness. In this algorithm, the parameters are adjusted adaptively to
enhance clarity and understanding of the parameter space. To prove application and robustness, the SD algorithm has been
compared with 10 standard and popular metaheuristic algorithms. Based on this, 45 different benchmark test functions
have been used. In addition, the algorithm has been tested and evaluated in high dimensions space. Also, it has been applied
to 57 real-world CEC 2020 problems and six classic engineering problems. As a specific application, the SD algorithm is
also used in solving the dynamic load-balancing problem. The results are generally indicative of the potential of the
proposed algorithm to effectively solve complex optimization problems. The source codes of the SD algorithm are publicly
available at https://github.com/harifi/SD.

Keywords Metaheuristic - Optimization - Star Death (SD) algorithm - Physics-based algorithm - High-dimensional tests -
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1 Introduction

The global landscape is experiencing heightened com-
plexity daily. The allocation of resources is constrained,
emphasizing the critical need for their efficient utilization.
The quest for effective and optimal problem-solving
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strategies in intricate scenarios necessitates the application
of pragmatic methodologies. Over the past few decades,
numerous optimization techniques have been introduced,
offering versatile applications across a spectrum of opti-
mization challenges [1] and yielding varying degrees of
performance. Diverse factors, such as the characteristics of
search spaces, can exert a notable influence on outcomes.
Within the dichotomy of optimization methodologies—
comprising deterministic and stochastic approaches—
stochastic optimization methods exhibit enhanced efficacy
in addressing large, intricate problems compared to deter-
ministic counterparts. Nonetheless, stochastic optimization
methods encounter challenges in highly complex scenarios,
including issues related to run time, convergence towards
local optima, and reliance on the nature of search spaces.
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In the real world, many problems occur in dynamic
environments, which is one of the most general types of
non-deterministic problems. Unlike static environments,
dynamic environments are always changing, and as a
result, the position and amount of optimal points also
change. Therefore, the solution methods must have the
ability to adapt to environmental changes. Although exact
methods can solve these optimization problems, these
methods need a lot of time to solve the problem. Some-
times it is enough to reach the near-optimal solution and
deal with the dynamic environment in a much shorter time.
So, approximate algorithms can be used for this. Approx-
imate algorithms can be divided into two categories:
heuristic and metaheuristic. Heuristic methods are com-
pletely dependent on the type of problem so they are
designed for some specific problems and are used for the
same specific problem. In this way, a heuristic method
specific to that problem should be designed for each
problem. Metaheuristic methods are more general and
common methods [2]. The diversity of their use in different
problems is more than heuristic methods, so it can be said
that they can be used for almost any type of problem. They
effectively search the problem space and reduce the prob-
lem-solving time. In this way, they can be used even for
very large problems.

Metaheuristics can be considered a subset of optimiza-
tion in computer science and applied mathematics. They
involve complex computing theory and algorithms. They
are also used in other fields such as artificial intelligence,
computational intelligence, and soft computing. Meta-
heuristics have been very effective and efficient in solving
complex problems in the real world, so their role in
reducing calculations and costs should not be denied [3].
Metaheuristic algorithms represent strategies crafted to
efficiently address computationally challenging optimiza-
tion problems. Researchers have drawn insights from a
variety of natural and physical processes to devise meta-
heuristics that have effectively delivered near-optimal or
optimal solutions for numerous engineering applications.
The practical significance of metaheuristic algorithms has
been widely acknowledged, particularly in recent years,
owing to their speed, high-quality solutions, and problem-
agnostic nature. However, no single metaheuristic can
universally tackle all types of optimization chal-
lenges. Consequently, numerous metaheuristics have been
introduced over time, to identify efficient metaheuristics
suitable for diverse optimization problem cate-
gories. Notably, the design of metaheuristics hinges on
mimicking the advancement or locomotion patterns of
specific phenomena or organisms. By replicating such
advancement or locomotion styles, a metaheuristic can
explore the search space of a problem akin to the habitat of
the emulated phenomenon or organism. Metaheuristics rely
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on two fundamental search strategies in their quest to
identify the optimal solution for a given problem [2]. The
initial strategy involves exploration, which delves into
uncharted search regions. The subsequent strategy is
exploitation, which scrutinizes the surroundings of the
identified optimal solution. The optimal performance of
any metaheuristic hinges on striking a balance between
these two strategies. Notably, an excessive emphasis on
exploration may hinder metaheuristics from reaching the
globally optimal solution, whereas an overemphasis on
exploitation could result in being trapped in local optima
[4]. If we want to present a category of these algorithms,
we can refer to Fig. 1. Even though, we cannot consider the
classification in Fig. 1 to be unique because different
classifications have been presented by authors. However,
the classification presented in the figure seems to be more
logical. This figure shows that algorithms fall into four
categories. These four categories are Evolutionary-based,
Trajectory-based, Ancient-inspired, and Nature-inspired
[4].

Evolutionary algorithms simulate the idea of biological
evolution. In this category, a population is considered a
solution candidate population and constantly tries to
change its genetic diversity. The concept of competition
creates evolution. In this type of algorithm, a population is
randomly selected so that each individual is a solution.
Then, in successive iterations, competent individuals are
selected and try to create a new population or a new gen-
eration of offspring [5]. Their children can achieve evo-
lution and repeat the same process. Among the popular and
common algorithms that can be included in this category
are Genetic Algorithm (GA) [6], Memetic Algorithm (MA)
[7], Differential Evolution (DE) [8], Harmony Search (HS)
[9], Clonal Selection Algorithm (CSA) [10], Backtracking
Search Algorithm (BSA) [11], Stochastic Fractal Search
(SES) [12], Across Neighborhood Search (ANS) [13], and
SO on.

Trajectory-based algorithms usually try to focus on one
solution and improve it. They do this with an iterative
routine so that through these iterative routines they are
transferred from one solution space to another solution
space. This group of algorithms can be very effective in
some problems, especially problems that have a type of
permutating state. The most popular algorithms of this
category are Simulated Annealing (SA) [14], Tabu Search
(TS) [15], Variable neighborhood search (VNS) [16],
Guided Local Search (GLS) [17], and Iterative Local
Search (ILS) [18].

The inspiration from the ancient is the source of the new
inspiration that has been introduced recently. Various and
complex human-made structures in ancient times and their
creation mechanisms show a kind of optimization despite
the many limitations that existed in that era [19]. The
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Fig. 1 Classification of metaheuristic algorithms

technology used in ancient civilizations was far ahead of its
time. A closer look at these technologies can reveal the
truths of optimization in ancient times. This category has
paved the way for modern optimization techniques.
Important algorithms of this category can be Giza Pyra-
mids Construction (GPC) [4], the Great Wall Construction
Algorithm (GWCA) which draws inspiration from the
historical practice of the construction of the Great Wall
[20], and Dujiangyan Irrigation System Optimization
(DISO) [21]. These ancient-inspired algorithms offer sim-
plicity, robustness, and competitive performance in solving
complex optimization problems. Also, the GPC, for
instance, utilizes a unique approach based on labor
movement dynamics, showcasing efficiency and high
convergence performance in comparison to existing

methods. By combining traditional wisdom with modern
computational concepts, these ancient metaheuristic algo-
rithms continue to contribute significantly to the opti-
mization field, offering innovative solutions to challenging
problems [19].

One of the most popular categories is the nature-based
category. Nature had billions of years to create, revise, and
edit various types of creatures to adapt to itself. Nature had
so much time that it was able to provide a solution to face
any challenge. These solutions are the solutions that
humans need to solve many of their engineering problems.
Nature has simple and understandable rules [22]. This
category is so large that it can itself include subcategories
such as Swarm-based, Bio-inspired, Human-based, Plant-
based, and Physics/chemistry-based.
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Swarm-based subcategory can be considered swarm
intelligence or group and collective behavior related to a
group of animals. In computing applications, swarm
intelligence is modeled on organisms or groups such as
ants, bees, fish, birds, and so on. In this type of community,
each of the agents or entities has a relatively simple
structure, but their swarm behavior seems complicated. In
other words, there is a very complex relationship between
swarm behavior and the individual behavior of a commu-
nity. Swarm behavior is not only dependent on the indi-
vidual behavior of the agents and members of the
community but also on the way of interaction between
individuals. Some of the most important and popular
algorithms in this subcategory are Particle Swarm Opti-
mization (PSO) [23], Glowworm Swarm Optimization
(GSO) [24], Intelligent Water Drops (IWD) [25], Group
Search Optimizer (GSO) [26], Hunting Search (HS) [27],
Migrating Birds Optimization (MBO) [28], Animal
Migration Optimization (AMO) [29], Radial Movement
Optimization (RMO) [30], Locust Swarm Algorithm (LSA)
[31], African Buffalo Optimization (ABO) [32], Joint
Operations Algorithm (JOA) [33], Coyote Optimization
Algorithm (COA) [34], Emperor Penguins Colony (EPC)
[35], and Special Forces Algorithm (SFA) [36].

Swarm-based algorithms are sometimes considered a
subcategory of bio-inspired algorithms. But it should also
be noted that many bio-inspired algorithms do not directly
use swarm behavior. For this reason, bio-inspired algo-
rithms can be placed in a separate subcategory. The num-
ber of algorithms in this subcategory is very large. Some of
them are Artificial Bee Colony (ABC) [37], Ant Colony
Optimization (ACO) [38], Firefly Algorithm (FA) [39], Bat
Algorithm (BA) [40], Krill Herd Algorithm (KHA) [41],
Gray Wolf Optimizer (GWO) [42], Moth-Flame Opti-
mization (MFO) [43], Ant Lion Optimizer (ALO) [44],
Crow Search Algorithm (CSA) [45], Whale Optimization
Algorithm (WHO) [46], Squirrel Search Algorithm (SSA)
[47], Fire Hawk Optimizer (FHO) [48], GOOSE algorithm
[49], Golden Jackal Optimization (GJO) [50], White Shark
Optimizer (WSO) [51], Spider Wasp Optimization (SWO)
[52], Puma Optimizer (PO) [53], Walrus Optimizer (WO)
[54], and Flying Fox Optimization (FFO) [55].

Human-based subcategory models human behaviors.
These behaviors include how humans search in the envi-
ronment and how they behave in the environment. Also,
social behaviors such as people’s cooperation with each
other can be modeled. Algorithms such as Imperialistic
Competitive Algorithm (ICA) [56], Biogeography Based
Optimization (BBO) [57], Teaching—Learning-Based
Optimization (TLBO) [58], Future Search Algorithm
(FSA) [59], Political Optimizer (PO) [60], Heap-Based
Optimizer (HBO) [61], and Squid Game Optimizer (SGO)
[62] can be placed in this subcategory.
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In general, any algorithm that models the behavior of a
plant is placed in the plant-based subcategory. Plant
growth, plant seed dispersal, root growth, and so on can be
modeled. Algorithms such as Invasive Weed Optimization
(IWO) [63], Artificial Root Foraging Algorithm (ARFA)
[64], Flower Pollination Algorithm (FPA) [65], Phototropic
Optimization Algorithm (POA) [66], and Waterwheel Plant
Algorithm (WWPA) [67] are included in this subcategory.

Algorithms that model the laws of physics or chemistry
fall under the physics/chemistry-based subcategory.
Meanwhile, any kind of physical and chemical phe-
nomenon can be a source of inspiration for this subcate-
gory. Physics-based metaheuristic algorithms have gained
significant attention in recent research. These algorithms
draw inspiration from various physical phenomena to
optimize complex problems efficiently. Some of the algo-
rithms in this subcategory are Black Hole Algorithm (BH)
[68], Water Wave Optimization (WWA) [69], Lightning
Search Algorithm (LSA) [70], Electromagnetic Field
Optimization (EFO) [71], Sine Cosine Algorithm (SCA)
[72], Thermal Exchange Optimization (TEO) [73], Water
Optimization (WAO) [74], Equilibrium Optimizer (EO)
[75], Light Spectrum Optimizer (LSO) [76], Prism
Refraction Search (PRS) [77], Snow Ablation Optimizer
(SAO) [78], and Wave Search Algorithm (WSA) [79].

Certainly, the sky, the galaxy, and the universe are signs
of absolute discipline and glory in nature. Sometimes there
are unique phenomena in the sky and galaxy that we may
negligence many of them. Except for the galaxy we are in
(the Milky Way), there are thousands of other galaxies in
the universe, each containing stars. So billions of stars are
scattered around us [80]. One of the attractions that ordi-
nary people may have paid less attention to is the death of
stars. When a star dies, many physical and chemical
reactions occur [81]. Studies show that there is some kind
of optimization within these reactions. In this paper, we
have examined the death of the star from the physical point
of view and considered it as the source of inspiration. In
this way, in this paper, a novel algorithm called the Star
Death (SD) algorithm is introduced and presented. In other
words, this paper delves into a metaheuristic algorithm
inspired by star death nonlinear physical phenomenon,
which presents a solid optimization framework showcasing
remarkable exploration and exploitation capabilities for
demanding optimization tasks.

The main contribution and innovation of this paper is to
consider the physical point of view of the star death process
as an effective source of inspiration for creating a new
metaheuristic algorithm. By carefully examining this
source of inspiration, which is placed under the category of
nature-inspired, we find that the wonders of the galaxy
happen very precisely, regularly, and optimally. The main
goal of this paper is to model the physical process of star
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death to present a new lightweight metaheuristic algorithm
with a simple mathematical formulation and at the same
time more effective compared to other physics-based
methods. In addition to having the important and efficient
capabilities of nature-inspired algorithms, the proposed
new algorithm also introduces new features. The sub-goal
of the paper is to perform various experiments to prove the
applicability and reliability of the algorithm, especially in
the specific application of dynamic load-balancing. Tradi-
tional load-balancing methods often rely on static rules or
heavy computational models, but the SD algorithm
employs an adaptable streamline in fluctuating workloads
and a nature-inspired search strategy to rapidly identify
near-optimal task allocations. In order to ensure efficient
resource utilization and prevent bottlenecks, SD dynami-
cally adjusts to changes in node performance, network
latency, or task demands.

Our motivation for formulating an innovative meta-
heuristic algorithm is derived from several pivotal factors
that address the shortcomings of current optimization
techniques and the escalating complexity of real-world
challenges. The following enumerates our primary
motivations:

1. Novel metaheuristic algorithms are inspired by a
myriad of sources. This heterogeneity not only culti-
vates creativity in the algorithmic design but also
facilitates investigating distinctive strategies that may
culminate in superior optimization outcomes.

2. Our metaheuristic approach is meticulously crafted to
enhance adaptability and resilience in addressing
various problem types, particularly those that entail
constraints. A significant emphasis in the design of our
algorithm is the capacity to sustain population diversity
and avert premature convergence.

3. There exists a persistent demand for algorithms that
exhibit enhanced performance in comparison to their
predecessors. Our objective is to augment the effi-
ciency, accuracy, and velocity of optimization pro-
cesses, which propels the development of our novel
algorithm capable of surpassing its forerunners in
specific applications.

4. The escalating utilization of metaheuristic methodolo-
gies across disciplines such as engineering, artificial
intelligence, and complex systems design compels the
necessity for perpetual innovation. Our impetus is to
develop an algorithm that not only addresses prevailing
issues but also exhibits adaptability to emergent
challenges in these swiftly advancing areas.

5. As real-world challenges become increasingly intri-
cate, conventional optimization techniques frequently
encounter difficulties in yielding satisfactory solutions.
Our algorithm, meticulously crafted to navigate

complex and high-dimensional landscapes, has
emerged as a formidable alternative owing to its
flexibility and capacity to transcend local optima.

The continuous development of innovative metaheuris-
tic algorithms is propelled by the imperative for efficient
resolutions to progressively intricate optimization chal-
lenges, the shortcomings of established methodologies, and
the myriad inspirations that catalyze pioneering strategies
within this domain.

The remainder of this paper is structured as follows:
Sect. 2 introduces star death ideology. Section 3 describes
Star Death (SD) algorithm. Section 4 includes experi-
mental results and discussion. Section 5 provides the sta-
tistical analysis. Section 6 represents high-dimensional
tests. Section 7 provides comparison results with top CEC
2020 algorithms. Section 8 presents application in solving
classical engineering problems. Section 9 proposes a
specific application for solving dynamic load-balancing.
Finally, Sect. 10 represents conclusions.

2 Star death ideology

Many astronomy enthusiasts have surely heard terms like
red giant, white dwarf, neutron star, supernova, etc. These
names, which are used to refer to a variety of stars, actually
depict different parts of a star’s life. Stars are born at some
point, and after a lifetime they eventually die. This cycle
continues. A cycle that can last between several hundred
million years and several billion years. Therefore, millions
or billions of years should be spent studying the life cycle
of stars from their birth to their death. Since humans do not
have much time and the process of changes in a star is very
slow compared to the life of a human being, scientists came
to a model called the stellar evolution [80] model by
studying different stars and examining them. The stellar
evolution, which represents the life cycle of a star, is a
process that a star goes through during its lifetime and
takes different times depending on the mass of the star.
When a star is born, the activities inside the core begin.
It is the energy released during activities inside the core
that makes the star luminous. During this period, the star
slowly feeds on its hydrogen and makes helium through
fusion in the core. The energy created from this fusion is
transferred through photons. As the hydrogen runs out, the
star’s life story enters a new phase that depends on the
star’s initial mass. A path that may lead to a massive
explosion or end with the star cooling and fading [81]. The
factor that determines the life span of the star and its fate
and life path is the initial mass of the star. From the size of
a star, its life can be roughly estimated. Smaller stars are
younger, and larger stars are nearing the end of their lives.

@ Springer
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Larger stars lose their energy quickly due to more activity
in the core than smaller stars and therefore have a shorter
lifespan.

As mentioned, the path of life and death of a star is
determined by its mass. There are two paths for star death,
one path is followed by high-mass stars, and the other path
by low-mass stars. Although the focus of this study is not
high-mass stars, in a brief explanation it can be said that
they eventually become a black hole or a neutron star. But
low-mass stars include a group of stars whose mass is less
than eight times the mass of the Sun. This category of stars
includes 95% of all the stars in the universe, and the sun is
one of them [82]. Figure 2 shows the life cycle of low-mass
stars.

After the low-mass star has burned nearly all of its
hydrogen, its core begins to contract and heat up, causing
the hydrogen to burn even faster. This created extra energy
radiates outward and causes the outer layers of the star to
move away from its core. At the same time as the outer
layers of the star expand, it cools and as a result, its color
becomes redder and redder and the star enters the Red
Giant stage [83].

In the red giant stage, the star’s core has become hot
enough to start burning helium. A type of nuclear fusion
process in which heavier helium cores are joined together
to form larger cores such as carbon and then oxygen. The
burning of helium continues, but eventually, the helium in
the core runs out, and after most of the core has been
converted into carbon and oxygen atoms, the star has no
more fuel to burn. As the last helium particles are burned,
the outer layers of the star are separated and spread back
into interstellar space. The ejected shell of the star forms a
mass called the Planetary Nebula [84].

After the planetary nebula disperses and separates into
space, a small, very hot, bare core of the star remains. A
mass called the White Dwarf [85]. White dwarfs are the
last stage in the life cycle of low-mass stars. White dwarfs
have low-energy light photons and also have Earth-sized
volumes. But they are very dense and their mass is about
the mass of the sun. When the star turns into a white dwarf,
the end of the star’s life comes. Some scientists believe that
the white dwarf will eventually lose its light and become a
Black Dwarf, which is practically invisible in space [82].

Low &
Medium
Mass Stars
(e.g. Sun)

Planetary
Nebula

White Black

Red Giant
- Dwarf Dwarf

e b K

Fig. 2 The life cycle of low-mass stars
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The star death ideology is the observation and thinking
about physical events and the star death moment, where
photons are optimally able to create, carry, or emit energy,
and as a result, change the luminosity level of the star.

3 Star Death (SD) algorithm

In a star, all the energy in its center (its core) is made by a
process called nuclear fusion. As a result, the energy in the
star is released in the form of heat and light. The energy of
this heat and light is transferred by photons. A photon, free
in a vacuum, is described as a self-sustaining, spiraling
wave packet of quantized spin angular momentum, moving
at the speed of light [86]. The reason why a star’s lumi-
nance is this process of moving photons.

In the star death algorithm, it is assumed that the pho-
tons are scattered in the body of the red giant. Among these
photons, the best photons are the bright photons that are
moving on the surface of the red giant, called elite photons.
Also, some photons are placed in the center and near the
center of the red giant, which are called central photons.
The main feature of elite photons is their luminosity and
emitting power. The main feature of central photons is their
density and nuclear fusion. As we move toward the center
of the red giant, the density of photons increases, and as we
move toward the periphery of the red giant, the brightness
of the photons becomes more apparent. The elite photon
and the central photon show the search radius or the radius
of the red giant. Over time, the photons are concentrated
towards the center and the radius of the red giant gradually
decreases until the red giant eventually becomes a white
dwarf.

In this algorithm, photons are scattered first. Then, after
determining the elite photon, the central photon, the posi-
tion of these two photons is determined based on the
position of other photons in successive iterations. To move
the elite photon, first, the luminosity rate is determined
through the following equation,

Lygie = 2.0 X o0 X rand (1)

where o is the absorption rate, which is a determinable
parameter. This parameter has a direct impact on the pro-
cess of turning a red giant into a white dwarf and controls
the amount of exploration and exploitation. Now that the
luminosity rate is obtained, the luminosity level is calcu-
lated. We have,

L=Luy xE—p (2)

where E is the position of the elite photon and p is the
position of the photon. Then the emitter rate is calculated,
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Emyge = o0 X rand — 1.0 (3)

where « is the absorption rate parameter. After determining
the photon emitter rate, the emitter level is calculated
through the following equation,

Em=A X Em,y, x L 4)

where A is an adaptive parameter and is obtained through

it
Max;,

2
the equation e< ) . Finally, the new position of the
elite photon is obtained through the following relationship,

Newg =FE — A X Em (5)

The same procedure happens with some changes for the
displacement of the central photon. To move the central
photon, the density rate must be obtained first. Its equation
is very similar to the luminosity rate equation, so we have,

D, gyie = 2.0 X o0 X rand (6)

where o is the absorption rate and the rand function is
called again to generate a new random number compared to
the random number in Eq. (1).

The outward force produced by the fusion process is
balanced by the inward gravitational pull of the star. It is
this balance between the two that prevents the star from
collapsing or expanding. In fact, these photons are con-
stantly approaching each other and causing the density of
the star to increase. When the density gets too high,
explosions occur and cause the photons to move slightly
apart. In this way, the density is slightly reduced. The
photon density is calculated based on the density rate of
each photon, the central photon and the position of the
surrounding photons. Therefore, to calculate the photon
density, we have,

D =Dyye xC—p (7)

where C is the position of the central photon and p is the
position of the investigated photon. Now we need to
determine the fusion rate, we have,

Frye = o X rand — 1.0 (8)

where o is the absorption rate and in general this equation
is like the emitter rate equation namely Eq. (3). This pro-
cess is constantly repeated to maintain the balance of the
star. Figure 3 shows the nuclear fusion process which is the
source of inspiration for this algorithm. By definition,
fusion occurs when two atoms are forced to form a heavier
atom. This releases a lot of energy. It should be taken into
account that fusion occurs only at extreme density, namely
in the center of the star. In Fig. 3, for example, the fusion
reaction of Deuterium (D) and Tritium (T) produces a
Helium nucleus (or alpha particle) and a high-energy

D Neutron

® .°

Fusion

T
He

Fig. 3 Example of nuclear fusion reactions

neutron. In this process, there is residual energy, which is
the luminosity of the star due to the presence of this energy.

In the SD algorithm, nuclear fusion is calculated through
the following equation for the central photon,

F=AXPF,4 XD 9)

where A is the adaptive parameter that was previously used
in Eq. (4). Finally, the new position of the central photon is
obtained through the following relationship,

Newc=C—AxF (10)

Now, with the obtained data, it is possible to obtain the
position of the photon during nuclear fusion. In this way,
the position of the photon after fusion and after determin-
ing the new position of the elite photon and the central
photon will be obtained by averaging the two positions of
the elite photon and the central photon. This equation is,

Newg + Newc¢
= — 11

Figure 4 shows a subjective perception of photon
movements. When photons spread around the nucleus, the
elite and central photons are identified. The difference
between the elite photon and the central photon shows the
search radius or the radius of the red giant. Over time, the
photons are compressed towards the center and the radius
of the red giant gradually decreases until the red giant
eventually becomes a white dwarf. This happens through
continuous averaging between the central photon and the
elite photon, which determines the position of the other
photons.

The above conditions are performed for all photons in
all their dimensions so that finally the vector 7’ is prepared
for the next iteration. In a dying star, this process continues
until all the energy of the star’s luminosity is lost, thus the
star gradually turns from a red giant into a white dwarf. For
the proposed algorithm we considered all star interactions
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Elite
Central

any photon

Red giant

Fig. 4 Subjective perception of photon movements

from a physical point of view. If we were to discuss the
matter from a chemical point of view, we should have
added pressure equations and equilibrium composition
between hydrogen and helium to the discussion, and this
would have complicated the algorithm and its calculations.
Therefore, the investigation of the star’s death from a
chemical point of view has not been done. Figure 5 shows
the pseudo-code of the Star Death (SD) algorithm. Also,
Fig. 6 shows the flowchart of the proposed algorithm.

Fig. 5 Pseudo-code of the Star Death (SD) algorithm

STEP 1:
generate initial swarm array of photons (Swarm size);
generate position of photons;
initialize elite and central photons of star;
STEP 2: for Firstlteration to MaxlIteration
STEP 3: for i=1 to n do (all n photons)
calculate cost of photon;
if cost < elite photon
determine photon as elite photon;
else
determine photon as central photon;
end if
END STEP 3
STEP 4: for i=1 to n do (all n photons)
for j=1 to m do (all m dimensions)
determine new position of elite photon (Eq. 5);
determine new position of central photon (Eq. 10);
determine new position of photon (Eq. 11);
end for
END STEP 4
END STEP 2
END STEP 1
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Fig. 6 Flowchart of the SD algorithm

4 Experimental results and discussion

In this section, the experiments performed to evaluate the
performance of the proposed SD algorithm are described in
detail, and also the discussions are presented about the
obtained results. Indeed, we first provide details of the
benchmark functions used to test the algorithms. Then, we
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explain the parameter settings and conditions for applying
the algorithm to the test functions. After that, we present
the test results and explain the results. Finally, we analyze
the results and identify the characteristics of the SD
algorithm.

For performance evaluation, 45 standard benchmark test
functions have been used [87]. In applied mathematics,
these functions are used to evaluate the properties of
optimization algorithms. These functions are designed to
check different conditions and situations of algorithms. The
purpose of using these functions is to check the perfor-
mance of the algorithm in terms of accuracy, efficiency,
and convergence rate in facing different conditions and
situations. In this paper, unimodal and multimodal func-
tions are considered. Unimodal functions have two types.
These two types are unimodal benchmark functions with
predefined and fixed dimension values and unimodal
benchmark functions with d-dimension values. Tables 1
and 2 lists these two categories of unimodal functions.

Multimodal functions are also two types. Multimodal
benchmark functions with predefined and fixed dimension
values and multimodal benchmark functions with d-di-
mension values are these two types. Tables 3 and 4 show
these two types. It has been tried to be as diverse as pos-
sible the benchmark functions so that they can well chal-
lenge the proposed algorithm and competing algorithms.

In order to validate and evaluate the performance, the
proposed algorithm has been compared with 10 popular
algorithms, all of which were implemented by us. These
algorithms in alphabetical order are Biogeography Based
Optimization (BBO) [57], Differential Evolution (DE) [8],
Genetic Algorithm (GA) [6], Golden Jackal Optimization
(GJO) [50], Giza Pyramids Construction (GPC) [4], Grey
Wolf Optimizer (GWO) [42], Invasive Weed Optimization
(IWO) [63], Particle Swarm Optimization (PSO) [23],
Teaching—Learning-Based Optimization (TLBO) [58], and
White Shark Optimizer (WSO) [51].

Experiments for each algorithm have been conducted
under completely fair conditions. Here are some settings
for the experiments. The initial population is considered to
be 20 for all algorithms. The number of decision variables
that determine the dimensions of the problem is set to 30 by
default for d-dimensional functions. Each algorithm for
each benchmark function is run 30 times independently,
then the mean and standard deviation of 30 independent
runs are recorded. The parameters related to the algorithms
are adjusted through trial and test so that they are in their
best state to be applied to the benchmark functions. The
type of crossover used in the DE algorithm is binomial
crossover. On the other hand, the GA algorithm uses
arithmetic crossover. The values of all parameters for each
algorithm are shown in Table 5. The criteria for stopping
algorithms is the number of function evaluations (NFE).

The computational complexity of all competing algorithms
is similar to each other so that with the number of popu-
lations considered and also the number of iterations that is
500, the number of calls of the benchmark function is equal
to 10,000 NFEs.

Tables 6 and 7 show the results obtained from applying
the proposed algorithm and competing algorithms on the
benchmark test functions. Bohachevsky (f;) and Booth (f,)
functions are both convex, unimodal functions. These two
functions are also defined for two-dimensional space. For
these two functions, the SD algorithm performs best. GA
algorithm recorded the worst performance. For the Easom
(f3) function, the SD algorithm also performs well. This
function is a modal ion function defined for two-dimen-
sional space. However, along with SD, other algorithms
such as GPC, PSO, and WSO algorithms provided very
good performance. The Gramacy & Lee function (f,) is a
simple, and one-dimensional function. This function is also
unimodal. For this function, the GPC, TLBO, WSO, and
SD performed best.

Matyas function (fs) is an almost simple, convex, uni-
modal, differentiable, and non-separable function. This
function is defined for two-dimensional space. For this
function, only the BBO, GA, and IWO algorithms per-
formed poorly and the rest of the algorithms achieved the
desired solution. The Power Sum function (f) is unimodal.
This function is defined for four-dimensional space. For
this function, the best performance is only for the SD
algorithm. Also, Schaffer N.2 (f;) and Schaffer N.4 (fg)
functions are non-convex, unimodal, differentiable, and
non-separable functions. These two functions namely
Schaffer N.2 and Schaffer N.4 are defined for two-di-
mensional space. Although the SD algorithm performs well
for these two functions, the rest of the algorithms also
perform well. The Griewank function (fy) however covers
the d-dimensional space. For this function, the SD algo-
rithm failed to record good performance. For this function,
DE, GJO, GPC, GWO, and TLBO algorithms had excellent
performance. Also, for this function, the solutions obtained
for the IWO algorithm are in the infeasible range.

The three Hyper-Ellipsoid (f;,) Perm (f;;) and
Zakharov (f5) functions are also unimodal. These func-
tions are also defined for d-dimensional space. The best
solutions for Hyper-Ellipsoid and Perm are related to the
proposed SD algorithm. For these two functions, some
algorithms such as IWO and WSO were in the infeasible
range. For the Zakharov function, the best solution is
related to the SD algorithm, and the GWO is in the
infeasible range. The rest of the algorithms gave typical
solutions. Functions Sphere (f,), Sum-Powers (f3), and
Sum-Squares (f;,) are almost simple functions. These
functions are also convex, and unimodal. For these three
functions, the best performance is related to the SD
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Table 1 Unimodal benchmark functions with predefined and fixed dimension value

Function Equation Range Dim f(x*)
Bohachevsky F1(x) =22 +2x3 — 0.3cos(3nx;) — 0.4cos(4mxy) + 0.7 [—100, 100] 2 0
Booth £() =+ 22+ 7+ 20 +x+5)° [~10,10] 2 0
Easom f3(x) = —cos(x; )cosxzexp(—(x; — m)* — (x; — 7':)2) 100, 100] 2 -1
Gramacy & Lee falx) = Sin(szf)ﬂx) Fx— 1 [0.5,2.5] 1 — 0.8690
Matyas fs(x) =0.26(x} +x3) — 0.48x;x, [-10,10]
Power Sum ; 2 0,4
Fol)) = S [(Si) | where b= 0.4
(8,18,44,114)
Schaffer N.2 N sin’ (x-2)-0.5 [—100, 100] 2 0
Fil0 =03 Ly
Schaffer N.4 B cos(sin(]3—x]))-05 [—100, 100] 2 0.2925
f3(0) =05+ [1+0.001 (2 +2)]"
Table 2 Unimodal benchmark . . . N
functions with d-dimension Function Equation Range Dim /(")
value . 2 ) _
Griewank folx) = Z?’:l s — Hil:] cos (%) 1 [—600, 600] d 0
Hyper- Fro@) =34, 2 [—65.536,65.536) d 0
Ellipsoid Y
Perm . ; 2 d,d d 0
OED (27:1(1 +8) (X_; —,l)) d,d]
Sphere fol) =YL 2 [-5.12,5.12]
Sum-Powers 7, (x) = XU ! =11 ¢ 0
Sum- fua0) =L, i [~10,10] d 0
Squares
2 4
Zakharov fis(x) = Z?:l X+ <Z?:1 Ojixi) + (Z;i:l 05”‘1‘) =510 ¢ 0

algorithm. Although GPC and TLBO algorithms also
showed acceptable performance for these three functions.
Beale functions (f4), Branin function (f;;), and Bukin
function (fg) are all multimodal and are defined for two-
dimensional space. For these three functions, the SD
algorithm performs very well. However, IWO and GWO
showed poor performances.

Camel Three-Hump function (f,;) is a non-convex,
multimodal, differentiable, and non-separable function. For
this function, all algorithms were able to reach the desired
solution. For the Colville function (f,;), which is defined
for the four-dimensional space, the best solution is related
to the SD and DE algorithms. Camel Six-Hump (f9),
Cross-In-Tray (f,,), Forrester (f,) and Michalewicz (fs,)
functions are non-convex and non-separable as well as
multimodal functions. All algorithms provide suitable so-
lutions for these functions. Although the best solutions are
provided by the SD algorithm.

@ Springer

Other functions, such as De Jong (f,3), and Drop-Wave
(f24), are all multimodal and non-convex. For the De Jong
function, the best performance is related to the SD algo-
rithm. However, in the case of the Drop-Wave function,
only BBO, GA, PSO, and TLBO algorithms could not
reach the desired solutions. The Eggholder function (fs) is
a hard function to optimize. The reason is the large num-
bers it requires for local optima. For this difficult function,
the best solution is the SD algorithm. After SD, the GPC
algorithm provided the best solution. The rest of the
algorithms in this function have a big difference to the
desired solution. The three functions Hartmann-3D (f,;),
Hartmann-4D (f,g), and Hartmann-6D (f,9) are multimodal
and are defined for three, four and six-dimensional space,
respectively. For these three functions, the best solution is
related to the SD algorithm. However, in the case of the
Hartmann-3D function, in addition to SD, DE and WSO
algorithms also provided favorable solutions.
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Table 4 Multimodal benchmark functions with d-dimension value
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Dim

Range

Equation

Function

[—32.768,32.768)

' cos(2nx,-)) + 20 + exp

d
i=

) - exp(éE
‘&';1)2
;= 1?1 4 10sin?(no; + 1)] + (g — 1)*[1 + sin?(21w,)]

2
i

D1 X

d
i=

fas(x)

Ackley

[—10, 10]
[~10,10]
[4.5]

2
i

i (2x-

d
i=

(0 =12+
sin®(mey) + >

F39(x)

Dixon Price

fao(x)

Levy

d
3
1

i [(X4i43 + 10x4:-2)% + 5(xaim1 +x4)” + (xaim2 + 2xai1)" + 10(x4i-3 +X4i)4]

fa(x)
far(x)

Powell

[-5.12,5.12]
[-5,10]

— 10cos(2mx;)]

7:1 [“‘712

10d +

Rastrigin

)+ (i — 1)2]

pasin(y/x])

+ SX,')

2
i

-l {100(;@-+1 X

fon(x) = Zi

faa(x)

Rosenbrock

[~500,500]
[-5.5]

d
i—

418.9829d — >

Schwefel

— 39.1659d

Sl (o — 1647

—le

fas(x) =

Styblinski Tang

The Holder-Table function (f;,) is non-convex, non-
differentiable and non-separable. Only DE and GWO
algorithms did not provide good solutions for this function.
Also, the SD algorithm has provided the best solution
among the algorithms. Also, the Langermann function
(f31), which is a function defined for two-dimensional
space. The best solution is provided by the BBO algorithm.
For this function, the SD algorithm has provided the sec-
ond-best solution. Levy N.13 (f3,), and Shubert (f54)
functions are non-convex, multimodal, differentiable, and
non-separable. Also, these two functions are considered
complex functions. For the Levy N.13 function, the best
performance is related to the SD algorithm, and the rest of
the algorithms could not have an acceptable performance.
Also, for the Shubert function, the SD algorithm together
with the PSO algorithm recorded the best performance.

Ackley (f35) and Levy (f,,) functions are also non-
convex, multimodal, differentiable, and non-separable
functions. These two functions are also complex. For the
Ackley function, the best performance is related to the SD
algorithm, and the worst is related to IWO. In the case of
Levy, the DE algorithm has shown the best performance.
The three functions of Dixon Price (f3g), Rastrigin (fy,),
and Rosenbrock (f,;) are very hard and differentiable
functions that are defined for the n-dimensional space. For
these three functions, the SD algorithm provides optimal
solutions. Meanwhile, for the Rosenbrock function, the
WSO algorithm is in the infeasible range. The Powell
function (f,) is non-convex and multimodal and is defined
for d-dimensional space. SD and GPC provided the best
performance for this function, respectively. The Schwefel
function (f,,) is a function for the d-dimensional space.
This function has a large search space and therefore creates
a great challenge for the algorithm. The best solution for
this function is the SD algorithm and then the GPC algo-
rithm. For the remaining functions namely the Shekel
function (f35), Trid function (f34), and Styblinski Tang
(f45), the performance of the proposed algorithm is gen-
erally evaluated well.

In total, the results of the benchmark functions show
that the proposed algorithm is successful. The results show
that the SD algorithm could not record the best perfor-
mance in only three of the 45 benchmark functions.

To show how to search and converge, we randomly
selected eight benchmark test functions and recorded the
perspective view of the population in iterations 1, 5, and
10. This view is shown in Fig. 7.

To compare the convergence of the proposed algorithm
compared to other competing algorithms, we randomly
selected 12 benchmark test functions and drew the con-
vergence curve of the algorithms. Figures 8 and 9 show
this comparison.
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Table 5 The values used to adjust the parameters of the algorithms

Algorithm Parameters Values
BBO Population size 20
Keep rate 0.2
Number of kept habitats 4
Number of new habitats 16
Immigration rates [0,1]
DE Population size 20
Lower bound of scaling factor 0.2
Upper bound of scaling factor 0.8
Crossover probability 0.2
GA Population size 20
Crossover percentage 0.7
Mutation percentage 0.3
GJO Search agents 20
C, 1.5
GPC Population size 20
Angle of ramp 10
Initial velocity [0,1]
Minimum friction 1
Maximum friction 5
Substitution probability 0.9
GWO Search agents 20
Initial convergence factor 2
WO Population size 20
Maximum population size 15
Minimum number of seeds 0
Maximum number of seeds 5
Variance reduction exponent 2
Initial standard deviation 0.5
Final standard deviation 0.001

PSO Swarm size 20
Inertia weight
Inertia weight damping ratio 0.98
Personal learning coefficient

Global learning coefficient

TLBO Population size 20

WSO Population size 20
Maximum wavy motion 0.75
Minimum wavy motion 0.07

SD Swarm size 20
Absorption rate 1

To calculate the computational complexity of the SD
algorithm, it is necessary to calculate the computational
complexity and space complexity. In the SD algorithm,
there is a main loop that counts the number of iterations.
This loop itself contains two separate loops. A loop
examines all members of the population and identifies the

elite photon and the central photon. The other loop checks
all the members of the population again and according to
the decision variables, obtains the new position relative to
the placement location of the elite photon and the central
photon, and finally calculates the position of the new
photon based on the mean of these two photons. On the
other hand, to define the group of photons, we need
O(n x Max;;), where n is the number of photons or mem-
bers of the population, and Max;, is the number of iterations
of the algorithm. Thus, if we assume that dim is the number
of decision variables and the algorithm stops at Max;,, the
computational complexity is equal to,
O(n X Max;;) + O(n x Max;, X dim). Space complexity is
the amount of space required at any given moment. This
algorithm is memory-less, as a result, the space complexity
of the SD algorithm is equal to O(dim) where dim is the
number of decision variables or problem dimensions.

Lightweight metaheuristic algorithms have been devised
in diverse fields to tackle issues related to computational
complexity. Given the constraints of the operational envi-
ronment for end-users, there is a pressing need for efficient
lightweight optimization algorithms to assist in minimizing
unnecessary energy usage and cost. The SD algorithm
presents a harmonious combination of optimization effec-
tiveness and computational expenditure across a range of
domains. The varied applications underscore the impor-
tance of lightweight metaheuristic algorithms in dealing
with limitations in resources while upholding performance
standards. In comparison to existing approaches, the SD
algorithm introduced displays quicker convergence and
lower memory demands. The memory requirement of the
proposed technique is notably smaller in contrast to many
conventional background subtraction methods. The SD
algorithm illustrates progress in attaining optimal solutions
with reduced computational load in diverse optimization
scenarios. Furthermore, within the domain of the Internet
of Things (IoT), researchers have delved into the utilization
of lightweight metaheuristic algorithms to deploy them on
resource-constrained IoT devices, aiming to optimize
implementation cost and performance. Given the inherent
limitations in processing power and memory of embedded
smart devices, the development of lightweight algorithms
that demand minimal memory for storage is of utmost
significance. The space complexity of the SD algorithm is
O(dim) and is relatively small when compared to the
memory requirements of other algorithms.

The SD algorithm shows exceptional efficiency in
maintaining diversity in the population and avoiding falling
into the local optimal trap. This algorithm is also very
flexible, effective, and stable. This algorithm has a very
good capacity to be used in various problems. The strategy
of photons in this algorithm is an interesting feature. To
effectively facilitate the emergence of photons from a local
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=l =} S O O - O =] =13 3 1 1 -
a EEEEEEEE ; 250 H nlotlon of pargm.etf:r interaction s.ugge.sts that. the effec
© <«<|E832£8888¢23238¢2 tiveness of optimizing parameters individually is enhanced
= g TS csagms g3 g
o0 Clss 1SS~ 5s«<3= by the influence of the emitter effect on luminosity and the
= _ . . . . .
= cec3asiezesTET g8 fusion effect on density. While there is a certain degree of
=% S g R EaE8gsE8RSEE0 R . . . . ..
= Sevy333SSScg-3Say parameter interaction in algorithms that possess a limited
S T A TR N R T B .- .. .
g csnS8ggogos=laoag g number of parameters, it is noteworthy that this interaction
= S5 2338388 S8 R8ALESER : : P
hS mlsdsdsgsss=insss intensifies significantly as the number of parameters
5] | | . . . .
£ involved grows. One of these parameter interactions in the
s © O — = < . . . .
2 TIE83 L2288 _.85838¢ SD algorithm is to adjust the amount of exploration and
° S e g 2283833883
Zle T cSSsYSssSsde e exploitation. In some problems, it is necessary to carry out
S | § B I A A | K o T
5= eSS mmsegg8egsregTzaz more exploration to perform better exploitation. This is
K|lS|lo|lgssrs8sEesge28rs8g s . . . . .
© :20 glvFSseSes~ggs-<S¢ especially necessary for high-dimensional and difficult
) = . .
2 problems. In the SD algorithm, the absorption rate
(=} S = o @ = . . .
SR R T N T i R parameter does this. We present a simple example in
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Fig. 7 Function shape, convergence diagram, and perspective view at 1st, 5th, and 10th iteration, respectively, from left to right

Fig. 10. In Fig. 10, the SD algorithm solves the Sphere

5 Statistical analysis

function as an example. The absorption rate parameter was

set once to 1 and again to 4. It can be seen that by setting
the parameter to the number 4, the algorithm spends more

time in the exploration phase.

Statistical analysis is the examination of significant dif-
ferences between algorithms using statistical hypothesis
testing. The purpose of statistical analysis is to determine

@ Springer



596 Page 18 of 35

Cluster Computing (2025)28:596

Bohachevs

108

1010

10715

Bukin

1040

10°60

1080

10100

Beale

100
107
10°10

10715

10720

1025

1075 (|
——BBO Ma..
——DE

R
wof | ——&% ‘H\H‘
& 0
—W
-15 PS H\\\«
10 ——TLBO
WSO
D b
10 20 30 40 50 10 20 30 40 50
Fig. 8 Convergence curves of algorithms for 12 randomly selected benchmark test functions (Part one)
Levy N.13 Shekel - Dixon Price
s 1()0
1075
1n-10 [
1018 l
& ORI DIOT) O LEP I s
10 b= S b
1025 \\
10% 10! :
10 20 30 40 50 10 20 30
Levy Rosenbrock Schwefel
199?)8% e : }
X5,
8000
v 7 ;
10! 000 My
6000 2
5000 | g b
——BDE
4000 GA
—— N
——GPC
3000 | 8P
——PS
——TLBO
WSO q
2000 b
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

Fig. 9 Convergence curves of algorithms for 12 randomly selected benchmark test functions (Part two)

whether the difference in the results obtained from the
algorithms is real or due to a statistical chance of the results
obtained. For this purpose, relationships and probabilities

between data are determined and
quantitatively.
In this paper, Friedman and Iman-Davenport tests are

used to find significant differences between the results

investigated
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Fig. 10 Adjusting the amount of exploration by changing the

absorption rate parameter

Table 8 Ranking of the
algorithms (sorted in
descending order)

Table 9 Results of Friedman’s
and Iman-Davenport’s tests

Table 10 Results of the Holm’s
method based on the mean of 30
independent runs (SD is the
control algorithm)

obtained from the SD algorithm and other competing
algorithms. Table 8 shows Friedman’s ranking based on the
results obtained from two Tables 6 and 7.

As Table 8 shows, according to Friedman’s ranking, the
SD algorithm has the best ranking, followed by the GPC
algorithm and then TLBO.

Table 9 shows the results of Friedman and Iman-
Davenport tests. It also shows that the hypothesis is
rejected. This table shows that there is a significant dif-
ference in the performance of the algorithms.

However, rejecting the hypothesis and identifying the
significant level alone is not enough to show a significant
difference. To prove the existence of a significant differ-
ence, post-hoc tests should be used, which makes a better
analysis. In this paper, Holm’s method is used as a post-hoc
test. In this test, the best rank obtained through the Fried-
man ranking, which is the SD algorithm, is considered as
control algorithm and is compared one by one with other
algorithms. Also, consider that the confidence interval for
this analysis is 95% (o = 0.05). The results obtained from

Algorithm Ranking Holm’s method are shown in Table 10. The results of the
SD 2.69 post-hoc test show that the SD algorithm has a significant
GPC 3.96 difference from other competing algorithms.
TLBO 5.16
GJO 5.76
PSO 5.88 6 High-dimensional tests
DE 6.52
WSO 6.99 Various sciences and technology are always developing
GWO 712 and expanding. This expansion causes the search space to
BBO 7.13 become larger and more complex. Therefore, optimization
GA 726 solutions in high dimensions are felt more than before.
WO 754 Enlarging the search scale is one of the points that we
justify in solving optimization problems. Many existing
metaheuristics cannot solve high-dimensional problems.
Test method Chi-Square Degrees of freedom (DF) p-Value Hypothesis
Friedman 109.3004 10 7.3829%¢-19 Rejected
Iman-Davenport 12.6450 10 2.2000e-16 Rejected
Algorithm J o/j z-Score p-Value Hypothesis
GPC 1 0.05 1.816346233 0.034662 Rejected
TLBO 2 0.025 3.532578893 0.000206 Rejected
GJO 3 0.016666667 4.390695223 < 0.00001 Rejected
PSO 4 0.0125 4.562318490 < 0.00001 Rejected
DE 5 0.01 5.477642575 < 0.00001 Rejected
WSO 6 0.008333333 6.149833701 < 0.00001 Rejected
GWO 7 0.007142857 6.335758906 < 0.00001 Rejected
BBO 8 0.00625 6.350060844 < 0.00001 Rejected
GA 9 0.005555556 6.535986049 < 0.00001 Rejected
IWO 10 0.005 6.936440337 < 0.00001 Rejected
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Table 11 The Mean and Standard Deviation of applying the TLBO, GPC and SD algorithms on high-dimensional test functions

Fn  Algorithms

TLBO GPC SD

dim = 5000 dim = 10,000 dim = 5000 dim = 10,000 dim = 5000 dim = 10,000
fo 1.11e-16 & 1.12e-16 1.12e-16 £ 1.08e-17  0.0000 + 0.0000 0.0000 £ 0.0000 0.0000 £ 0.0000 0.0000 £ 0.0000
f1o 291e-16 & 6.40e-16 1.11e-15 £ 6.14e-15 2.25e-17 £ 2.05e-17 1.74e-16 & 1.63e-16 4.12¢-20 £ 3.67e-20 2.32e-18 * 2.47e-17
f11  Infeasible Infeasible 115.9573 £ 67.8546 191.2547 £ 99.8552 77.9521 * 41.6595  107.2541 + 56.7452
f1o 1.16e-15 4 9.18e-16  1.05e-14 £ 1.17e-14 1.69e-21 £ 1.89e-21 1.38e-22 4 1.48e-22  6.99¢-34 + 1.13e-34 8.78e-33 + 1.47¢-33
f13 2.48e-17 4 2.86e-17 4.14e-16 £+ 4.23e-16  3.00e-37 £ 4.68e-37 5.41e-39 & 7.65¢-39 3.59e¢-49 + 2.51e-49 2.35e-44 * 3.14e-44
fia 6.45e-18 £ 1.38e-19 2.26e-10 & 2.92e-10 1.36e-18 = 1.79e-18 9.41e-17 £ 3.50e-17 8.32e¢-30 £ 7.02¢-32  2.92¢-28 + 6.37¢-29
f15 Infeasible Infeasible 2.55e-15 + 4.29e-15  3.03e-15 £ 1.59e-15  7.5005 % 10.6063 0.0195 £ 0.0266
fig 4.44e-15 & 432e-16 3.14e-15 & 2.25e-14 4.71e-12 £ 3.97e-12  2.30e-12 & 2.40 -12 0.0000 £ 0.0000 0.0000 £ 0.0000
f30  0.9999 + 5.19e-05 1.0000 =+ 1.59¢-06 1.0000 =+ 1.23e-07 1.0000 + 3.57e-09  0.6761 £ 0.0111 0.6674 £ 0.0005
fao 4539388 £ 0.6220  907.0086 + 2.1256  454.2377 £+ 0.1675  908.8227 4 0.0472  454.5420 £ 0.1654  908.8647 £ 0.0091
fa1 4.47e-22 £+ 6.84e-22  1.12e-24 &+ 7.3e-25  6.70e-22 £ 7.18e-22  3.29¢-19 & 4.13e-19  9.09e-33 + 3.57e-33  1.25e-31 =+ 3.32¢-32
f4  0.0000 = 0.0000 0.0000 = 0.0000 0.0000 = 0.0000 0.0000 = 0.0000 0.0000 % 0.0000 0.0000 = 0.0000
faz 4998.841 £ 0.0025  9997.715 £ 0.0883  4998.215 £ 0.0047  9998.893 £+ 0.0076  4997.957 £ 0.0073  9996.927 + 0.0141
fas Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
fas — 14.0846 £ 0.0906 — 14.2084 + 0.1678 — 9.4854 + 0.1593  — 9.3132 + 0.0767  -15.3816 + 0.2674  -15.5110 * 0.2019

Table 12 The results of problems RCO1 to RCO7 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAgES SD
RCO1 189.3116 + 5.6843e-14 217.2743 £ 24.9573 189.3116 & 1.2937e-09 189.3116 + 0.0000
RC02 7049.037 + 0.0000 7049.037 £ 9.0949e-13 7049.037 £ 2.5233e-08 7049.037 £ 0.0000
RCO03 — 142.7193 £ 2.1540e-05 — 4366.677 + 318.5757 — 4324911 £ 263.7816 -4529.119 £ 0.0007
RC04 -0.3882 + 3.8893e-07 — 0.3874 £ 0.0028 — 0.3871 £ 0.0036 — 0.3882 £ 2.5612¢-05
RCO5 -400.0032 + 0.0059 — 340.8304 £ 112.5827 — 397.6837 £ 7.8463 — 399.7448 £+ 0.4734
RC06 1.8699 £ 0.0150 2.0633 £+ 0.1016 2.0052 £+ 0.1293 1.8638 £ 0.0001
RC07 1.5739 + 0.0159 1.8400 &+ 0.1912 2.0213 + 0.1101 1.5672 £ 0.0002

The reason is that as the dimensions of the problem
increase, its search space increases exponentially. This
makes the evaluation of high-dimensional problems very
costly. One of the important points is the interaction
between variables. If the variables are independent, even if
the dimensions are increased, each of the variables can be
solved and the whole problem can be solved. But if the
variables interact with each other, they all have to be
optimized together, so optimization becomes difficult.

In this section, an experiment has been performed to
evaluate the performance of the algorithm presented in the
high dimensions. The difference between the experiments
related to this section and Sect. 4 is the number of
dimensions. The number of dimensions is 5000 and 10,000.
It should be mentioned that this experiment was performed

@ Springer

for benchmark functions for which high dimensions can be
considered. This means that experiments have been per-
formed on the benchmark functions of Tables 2 and 4.
Also, according to Table 8, the second-best and the third-
best algorithms have been used for comparison. According
to the table, GPC and TLBO algorithms are selected for
comparison. Table 11 shows the results of running the
algorithms on the high dimensions. Here we point out that
some solutions obtained from some algorithms are not
within the acceptable range. Therefore, it is specified in the
table with the term infeasible. This means that the algo-
rithm failed to provide a suitable solution.

Table 11 shows that the SD algorithm can solve prob-
lems in high dimensions better than the other two algo-
rithms. However, in the case of the Schwefel function (f,4),



Cluster Computing (2025)28:596

Page 21 of 35 596

Table 13 The results of problems RC08 to RC14 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAGES SD
RC08 2.0000 £ 0.0000 2.0000 £ 0.0000 2.0000 £ 9.9301e-17 2.0000 £ 0.0000
RC09 2.5576 = 0.0000 2.5576 = 0.0000 2.5576 + 2.7153e-09 2.5579 £ 0.0006
RC10 1.0765 * 6.6613e-16 1.1042 + 0.0623 1.0765 + 1.8867e-15 1.0765 + 4.8000e-05
RCI1 101.1912 £ 3.4750 147.8153 + 20.3821 99.2388 £ 0.0004 99.2388 + 0.0003
RC12 2.9248 + 4.4408e-16 2.9248 £ 4.3546e-16 2.9362 + 0.0110 2.9276 £+ 0.0136
RC13 26,887.42 £ 1.0913e-11 26,887.42 £ 1.4287e-11 26,887.42 £ 1.1082e-11 26,887.01 % 0.0004
RC14 58,505.45 £ 0.0127 58,505.45 £ 2.8574e-11 56,620.40 £ 2967.292 53,639.04 + 0.1216

Table 14 The results of problems RC15 to RC33 from CEC 2020

Problem  Algorithm

sCMAgES

SD

SASS COLSHADE
RC15 2994.424 + 4.5474e-13 2994.424 + 8.9628e-13
RC16 0.0322 £ 1.3877e-17 0.0322 £ 1.3608e-17
RC17 0.0126 = 0.0000 0.01266 + 1.0419e-07
RC18 6059.714 £ 3.6379e-12 6062.179 £ 8.1967
RC19 1.6702 £ 2.2204e-16 1.6702 £ 2.1773e-16
RC20 263.8958 + 5.6843e-14 263.8958 + 5.5739e-14
RC21 0.2352 + 2.7755e-17 0.2352 + 2.7216e-17
RC22 1.0015 £ 0.7105 0.5410 £ 0.0417
RC23 16.0698 * 3.5527e-15 16.0698 + 3.4837e-15
RC24 2.5437 £ 0.0000 2.5437 £ 0.0000
RC25 1616.120 £ 0.0009 1639.037 £ 98.7721
RC26 38.5140 £ 2.0720 36.6109 + 1.3411
RC27 524.4691 + 0.0064 524.4507 + 1.1147e-13
RC28 14,614.13 £ 0.0000 16,958.20 £ 7.1346e-12
RC29 2,964,895.4 + 4.65e-10 2,964,895.4 £ 4.56e-10
RC30 2.6585 £ 4.4408e-16 2.6618 £ 0.0108
RC31 1.81e-18 £ 8.79¢-18 1.88e-16 & 3.73e-16
RC32 — 30,665.53 &+ 7.27e-12 — 30,665.53 £ 7.13e-12
RC33 2.6393 £ 4.4408e-16 2.6393 £ 4.3546e-16

2994.424 + 2.4556e-12
0.0364 £ 0.0017
0.0126 £ 4.5420e-06
6088.600 £ 65.0244
1.6702 £ 5.2232e-05
263.8958 + 2.1270e-12
0.2352 4+ 1.1102e-16
0.5308 £ 0.0042
16.2086 + 0.2013
2.8297 £+ 0.2155
3022.135 4 387.5627
53.7101 £ 17.5152
524.7400 % 0.1880
14,614.13 £ 1.2639%-11
2,964,912.3 £ 34.1029
4.2369 £ 1.0352
9.25e-15 & 2.64e-15
— 30,665.53 £ 3.00e-11
2.6393 £ 1.6280e-15

2994.424 + 0.0001
0.0322 + 2.0816e-17
0.0126 + 0.0000

5885.361 £ 0.0335
1.6702 £ 6.6613e-16

263.8969 + 0.0012
0.2352 4+ 1.1102e-16
0.5263 = 0.0004

16.0698 + 3.5527e-15
2.5349 + 0.0161
1616.120 £ 0.0003
35.3642 £ 0.0060
524.4518 £ 0.0010
14,614.36 + 0.2086
2,964,895.4 £ 0.0346
2.6139 + 4.4408E-16
3.42¢-18 + 1.13e-17
-30,665.48 * 0.0551
2.6393 + 8.8817¢-16

none of the algorithms provided a solution within the
desired range. But in general, the performance of the SD
algorithm is evaluated very well.

7 Analysis of SD on CEC-2020

The CEC 2020 benchmark set is a collection of optimiza-
tion problems used to evaluate the performance of evolu-
tionary algorithms and other metaheuristics. This set is

designed to mimic “general” problems that may be inter-
esting in practice, and it includes a variety of mathematical
functions with known properties. These functions are used
to test the performance of optimization algorithms in terms
of their ability to find good solutions within a given number
of function calls. In general, there are 57 real-world opti-
mization problems in this set. The functions in this set are
designed to test various aspects of optimization algorithms,
such as their ability to handle non-separable functions, non-
convex functions, and functions with discontinuities. The
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Table 15 The results of problems RC34 to RC44 from CEC 2020

Problem Algorithm

SASS COLSHADE sCMAGES SD
RC34 0.0007 £ 0.0025 4.9548 + 1.9767 1.2293 £+ 0.5623 0.0003 + 0.0001
RC35 0.0803 + 0.0001 96.0740 4 20.8837 0.0922 4 0.0039 0.0800 + 5.035e-05
RC36 0.0479 % 0.0001 84.3238 £ 19.0493 0.0657 £ 0.0087 0.0477 £ 1.132e-05
RC37 0.0189 £ 0.0006 2.6958 £ 0.7765 0.1671 £+ 0.1594 0.0186 = 4.008e-05
RC38 2.7378 £ 0.0714 8.2776 £ 1.5964 4.1325 + 0.8484 2.7140 % 9.516e-05
RC39 3.0095 £ 0.9431 9.3093 £ 2.4904 4.4215 £ 0.7385 2.7517 £ 0.0001
RC40 8.12¢-28 * 1.30e-27 111.9598 + 78.3060 1.46e-27 + 3.51e-28 723.8742 + 243.7266
RC41 1.45e-26 + 1.23e-27 18.2764 + 14.6613 3.59e-26 * 8.91e-27 2.3899 & 4.7679
RC42 0.0881 + 0.0082 2.6137 £+ 2.1741 8.2803 £ 15.0155 0.0820 + 0.0042
RC43 0.0834 + 0.0097 24.0294 + 5.3787 14.6852 + 18.7252 0.0830 + 0.0024
RC44 — 6109.461 £ 72.4618 — 6032.419 £ 104.1890 — 6085.704 £ 78.5474 -6135.378 + 154.5109

Table 16 The results of

COLSHADE

sCMAgES

SD

problems RC45 to RC50 from Problem Algorithm

CEC 2020 SASS
RC45 0.0521 £ 0.0096
RC46 0.0542 £+ 0.0095
RC47 0.0462 £+ 0.0265
RC48 0.0570 £+ 0.0192
RC49 0.0369 £+ 0.0084
RC50 0.0236 £ 0.0100

0.0427 % 0.0054
0.0260 % 0.0055
0.0182 £ 0.0031
0.0218 £ 0.0039
0.0325 £ 0.0039
0.0650 £ 0.0472

0.0856 + 0.0165
0.0487 £ 0.0152
0.0332 £ 0.0060
0.1332 £+ 0.1929
0.1800 % 0.0881
0.0838 £ 0.0263

0.0613 £+ 0.0212

0.0202 + 6.244¢-06

0.0177 £ 0.0123
0.0179 = 0.0018
0.0129 + 0.0029
0.0151 * 0.0003

Table 17 The results of problems RC51 to RC57 from CEC 2020

Problem Algorithm
SASS COLSHADE sCMAgES SD

RC51 4550.972 £ 0.0586 4550.945 £ 0.0665 4551.003 £ 0.1026 4550.924 £ 0.1303
RC52 4165.308 £ 256.6721 3372.124 £+ 12.7273 3633.938 £ 54.9228 3349.019 + 0.0661
RC53 5252.365 + 148.0950 5109.499 + 55.4132 5466.613 + 113.3049 5001.750 + 4.8793
RC54 4241.097 £ 2.1175 4245.936 + 3.3429 4273.1001 + 8.3910 4240.842 £ 0.2932
RC55 6700.402 £ 2.3352 6732.505 % 53.6035 6727.375 + 0.2777 6699.891 + 4.0427
RC56 14,751.51 £ 3.6906 14,762.76 £ 4.5762 14,764.76 £ 3.2363 14,748.93 + 2.6475
RC57 3213.308 £+ 0.0401 3628.239 £ 287.5174 3312.303 £ 44.2391 3213.298 £ 0.0067

classification of these 57 engineering problems is as fol-
lows: number of 7 industrial chemical processes (RCO1-
RCO07), number of 7 process synthesis and design problems
(RCO8-RC14), number of 19 mechanical engineering
problems (RC15-RC33), number of 11 power system
problems (RC34-RC44), number of 6 power electronic
problems (RC45-RC50), and number of 7 livestock feed
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ration optimization (RC51-RC57). Complete details of
these problems are available in [88].

For comparison, the SD algorithm is set based on the
conditions in [88]. So that the number of 25 independent
implementations is considered. Also, the number of func-
tion calls and the number of population are based on the
conditions in [88]. A comparison of the mean and standard
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deviation of 25 independent runs of the SD algorithm with
the top three CEC 2020 algorithms has been done. These
algorithms are SASS [89], COLSHADE [90], and sCMA-
gES [91], respectively.

Tables 12, 13, 14, 15, 16 and 17 show the results
obtained from the SD algorithm compared to the top three
CEC 2020 algorithms. As it is clear, the SD algorithm can
easily compete with the superior CEC 2020 algorithm. The
tables show that this algorithm is successful in solving a
large number of these problems.

8 Solving classical engineering problems

Engineering problems usually have several equality and
inequality constraints [92]. To solve these problems, a
constraint management method is needed. One of the main
challenges in constraint management is the direct effects of
the fitness function on the position of search agents. In the
SD algorithm, there is no direct relationship between the
search agents, which are photons, and the objective

Fig. 11 Parameters and variables of the gear train design problem

Table 18 The results obtained from the algorithms in solving the gear
train design problem

Algorithm  Optimum variables Cost

ng ng nc np Best Mean Std
BBO 53 13 30 51 227e-11 1.83e-07 2.44e-07
DE 53 14 30 50 2.1le-11 1.81e-07 2.76e-07
GA 53 13 30 51 230e-11 1.80e-07 3.34e-07
GJO 49 16 19 43 1.38e-12 4.47e-08 4.42e-08
GPC 49 19 16 43 2.70e-12 2.0le-09 2.35e-09
GWO 19 16 44 49 2.78e-11 3.18e-08 3.11e-08
IWO 33 15 13 40 2.15¢-08 4.65e-06 3.87e-06
PSO 43 16 19 49 2.70e-12 3.16e-09 5.26e-09
TLBO 43 16 19 49 2.70e-12 3.17e-09 4.94e-09
WSO 33 14 17 50 1.08e-09 2.74e-08 1.16e-07
SDA 49 16 19 43  2.70e-12 1.78e-09 5.05e-09

function. Therefore, it is easy to handle and manage con-
straints by creating appropriate constraints and penalty
functions. In the SD algorithm, if any photon violates the
constraint, it is not used in the next iteration. It is necessary
to mention that simple and scalar penalty functions have
been used in this paper.

8.1 Gear train design problem

The gear train design is one of the real-world discrete
problems. The goal of this problem is to achieve the
optimal tooth value for the four gears of the train so that the
gear ratio is minimized. Due to the discreteness of the
problem, the search factors are rounded before evaluating
the fitness function. Figure 11 shows the parameters and
variables of the problem. In this figure, the parameters
show the number of teeth of the gears. The number of
variables in the problem is four variables. This problem has
no constraints. Full details of this problem can be found in
Appendix A. Table 18 shows the results obtained from the
algorithms.

8.2 Pressure vessel design problem

A pressure vessel is a closed container in which fluids are
stored. The design of the vessel is such that the chamber
pressure is different from the ambient pressure. Optimum
design and construction of these vessels are very important
because changes in the pressure difference parameter may
cause vessel destruction and explosion. The main objective
of this problem is to minimize the cost of materials,
forming, and welding of a pressure vessel. Figure 12 shows
the parameters and variables of the problem. The variables
of this problem are shell thickness (7s), head thickness
(Th), inner radius (R), and cylinder cross-section length
excluding the head (L). Details are available in Appendix
A. Table 19 shows the results obtained from the
algorithms.

8.3 Speed reducer problem

An important part of the gearbox of mechanical systems is
the speed reducer. The speed reducer design problem has
seven design variables, so the algorithms to solve it face
many challenges. The objective is to minimize the weight
of the speed reducer in such a way that the constraints are
taken into account. The constraints of the problem are the
bending stress of the gear teeth, the surface stress, the
transverse deviation of the shaft, and the stresses in the
shafts. The variables of this problem are the width of the
face (b), the module of the teeth (m), the number of teeth in
the pinion (z), the length of the first shaft between the
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bearings (/1), the length of the second shaft between the
bearings (I2), the diameter of the first shaft (d1) and the
diameter of the second shaft (d2). Figure 13 shows the
parameters and variables of the problem. See the details of
this problem in Appendix A. Table 20 shows the results
obtained from the algorithms.

8.4 Tension/compression spring design problem

The tension/compression spring design problem is a con-
tinuous constrained optimization problem. The goal of this
problem is to minimize the weight of the tension/com-
pression spring. The variables of the problem are wire
diameter (d), average coil diameter (D), and number of
active coils (N). Figure 14 shows the parameters and
variables of the problem. The conditions and details of this
problem can be seen in Appendix A. Table 21 shows the
results obtained from the algorithms.

Fig. 12 Parameters and variables of the pressure vessel design
problem

8.5 Three-bar truss design problem

A structure consisting of several members, all of which are
connected with pins, is called a truss. There is only force in
the truss because there are no torque joints in it. The pur-
pose of truss design is to minimize the weight of the truss.
For this paper, the design of the three-bar truss is consid-
ered. One of the main challenges of this issue is the limited
search space and the difficulty of searching in this limited

Shaft 2
Gears
‘l/ l
X5 x4 X2 X3 X4
>
Shaft 1

Fig. 13 Parameters and variables of the speed reducer problem

—|

d

Fig. 14 Parameters and variables of the tension/compression spring
design problem

Table 19 The results obtained

from the algorithms in solving Algorithm  Optimum variables Cost

the pressure vessel design T, T, R L Best Mean Std

problem
BBO 0.8758  0.4330  45.3805 139.8165  6074.7532 6497.4932 342.1000
DE 1.0000 1.0000  48.0610 155.8371 10,215.6706 12,946.8820  773.5101
GA 1.0357  0.5128  52.2626 81.4099  6622.3850 7315.4543 591.3064
GJO 0.7863  0.4153  40.6946 195.4049  5996.9073 6697.4790 533.2893
GPC 0.8090  0.3999  41.9208 178.8500  5940.3298 6196.5115 266.3042
GWO 3.5207 5.9053 84.6510 31.0138 Infeasible Infeasible Infeasible
WO 0.8063  0.3986  41.7704 180.7540  5936.4976 17,635.1938  9259.0283
PSO 0.8669  0.4285  44.9196 144.5550  6055.0596 6241.7073 238.7148
TLBO 0.7781 0.3846  40.3196 199.9999  5885.3352 5995.9059 148.0351
WSO 0.7781 0.3846  40.3199 199.9957  5885.3622 6002.0570 148.9857
SD 0.7789  0.3852  40.3590 199.4544  5887.3137 5887.3137 9.25e-13
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Table 20 The results obtained from the algorithms in solving the speed reducer problem

Algorithm Optimum variables Cost
b m z A b d, d> Best Mean Std
BBO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4818 2994.5004 0.0220
DE 3.2727 0.6035 22.9540 8.0571 8.0425 3.5267 5.4830 3544.5543 Infeasible Infeasible
GA 5.1723 0.7083 12.3816 6.9443 7.7533 3.3565 5.3208 2664.9310 2702.1011 28.5816
GJO 3.5015 0.7000 17.0000 7.3301 8.1154 3.3507 5.2947 3009.4097 3028.5445 8.6294
GPC 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4719 2994.6103 0.69200
GWO 3.5615 0.7102 24.6215 7.8397 7.9499 3.6914 5.4324 4921.2157 Infeasible Infeasible
IWO 3.5003 0.7000 17.0000 7.4896 7.7600 3.3513 5.2869 2997.6934 3000.9944 3.1554
PSO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4711 2994.4711 1.31e-05
TLBO 3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2866 2994.4711 2996.9166 7.7333
WSO 3.5001 0.7000 17.0001 7.3000 7.7160 3.3502 5.2866 2994.6501 3003.9609 20.423
SD 3.5000 0.7000 17.0000 7.4763 7.7405 3.3544 5.2867 2997.7382 2997.7382 1.38e-12
I:Otirlf til arfggrirtilsr;llgsifl;i)elll\lllii(; Algorithm Optimum variables Cost
tension/compression spring d D N Best Mean Std
design problem
BBO 0.053925 0.41266 8.6376 0.012765 Infeasible Infeasible
DE 0.053592 0.40311 9.4557 0.013263 0.014330 0.00089
GA 0.055078 0.41964 8.9401 0.013927 Infeasible Infeasible
GIO 0.050000 0.31709 14.0845 0.012751 0.012860 0.00021
GPC 0.051480 0.35187 11.5784 0.012666 0.012724 7.99¢-05
GWO 0.065054 0.66382 8.6975 0.030052 Infeasible Infeasible
IWO 0.050000 031715 14.0671 0.012739 0.012894 0.00014
PSO 0.051968 0.36346 10.9039 0.012667 0.013471 0.00112
TLBO 0.051775 0.35878 11.1695 0.012666 0.012705 4.67e-05
WSO 0.051686 0.35665 11.2929 0.012665 0.012691 5.54e-05
SD 0.050615 0.33142 12.9423 0.012687 0.012687 7.05e-18

Fig. 15 Parameters and variables of the three-bar truss design

problem

space. Constraints of the problem include stress, deflection,
and buckling. Figure 15 shows the parameters and vari-
ables of the problem. Appendix A describes this problem in

detail. Table 22
algorithms.

shows the results obtained from the

8.6 Welded beam design problem

The main goal in the problem of welding beam design is to
reduce the cost of welding beam fabrication. The mini-
mization of construction cost is influenced by shear stress
(1), bending stress in the beam (6), buckling load on the bar
(Pc), end deflection of the beam (6), and side constraints.
The variables of the problem are weld thickness (4), bar
thickness (b), bar height (¢), and length of the part attached
to the bar (/). Figure 16 shows the parameters and variables
of the problem. Details of this problem can be found in
Appendix A. Table 23 shows the results obtained from the
algorithms.
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Table 22 The results obtained from the algorithms in solving three-
bar truss design problem

Algorithm  Optimum variables  Cost

Ay Ar Best Mean Std
BBO 0.79137  0.40068  263.9020 266.2802 2.9907
DE 0.78871 0.40814 263.8960 263.8972 0.0023
GA 0.78875 0.40804 263.8967 264.9977 1.4771
GJO 0.78708 0.41284 263.9040 265.8202 5.9811
GPC 0.78875 0.40804 263.8960 263.9000 0.0071
GWO 0.78760  0.41134  263.9018 267.7010 7.9804
IWO 0.78817 0.40967 263.8963 263.8989 0.0031
PSO 0.78877 0.40798  263.8960 263.9027 0.0121
TLBO 0.78877 0.40799  263.8960 263.8960 7.94e-05
WSO 0.78868  0.40825 263.8960 263.8960 5.97e-12
SD 0.78908 0.40711 263.8960 263.8960 1.15e-13
P
;Lh ‘
”~ R 7

b

————H]

)

Fig. 16 Parameters and variables of the welded beam design problem

9 Solving dynamic load-balancing
as a specific application

Load-balancing is a method of evenly distributing network
traffic among the resources that support an application.
Modern applications must process millions of users
simultaneously and return the correct text, video, images,
and other data to each user in a fast and reliable manner. To
handle high volumes of traffic, many applications have
multiple origin servers with duplicate data. A load balancer
is a device that sits between the user and the server group
and acts as an invisible facilitator. It also ensures that all
source servers are used equally [93]. Dynamic load-bal-
ancing is a method used in computing to distribute work-
loads evenly across a network or computing environment.
Unlike static load-balancing, which assigns tasks based on
predefined rules, dynamic load-balancing continuously
monitors the current load and performance of each server
or node in real-time. This allows the system to adaptively
allocate incoming tasks based on the current state of
resources, maximizing throughput and minimizing
response times while avoiding overload on any single
resource. Figure 17 provides a visual perception of the
load-balancing.

Dynamic load-balancing is essential for maintaining
efficient operations in modern computing environments by
allowing systems to respond quickly to changing demands.
In addition, dynamic load-balancing is particularly bene-
ficial in scenarios with high traffic volumes, complex net-
works with varying server capacities, and environments
where workloads can change suddenly. It is widely used in
cluster computing and data centers to ensure optimal per-
formance and resource utilization. Cluster computing

Table 23 The results obtained

from the algorithms in solving Algorithm Optimum variables Cost

the welded beam design h l t b Best Mean Std

problem
BBO 0.28672 2.7052 7.6193 0.28939 2.0178 2.6443 0.33052
DE 0.22223 4.1247 7.7114 0.30368 2.2670 3.0980 0.63903
GA 0.18889 5.4037 6.6958 0.38090 2.5939 3.1556 0.40397
GIO 0.20396 3.5044 9.0529 0.20566 1.7290 1.7361 0.00720
GPC 0.20573 3.4705 9.0366 0.20573 1.7249 1.7710 0.10220
GWO 0.24097 5.2566 8.1159 0.35853 3.0329 Infeasible Infeasible
WO 0.19782 3.6581 9.0192 0.20658 1.7409 1.8615 0.13141
PSO 0.20573 3.4705 9.0366 0.20573 1.7249 1.9234 0.36908
TLBO 0.20573 3.4705 9.0366 0.20573 1.7249 1.7249 6.64¢-10
WSO 0.20573 3.4705 9.0366 0.20573 1.7249 1.7253 0.00139
SD 0.20571 3.4708 9.0371 0.20573 1.7249 1.7249 6.77e-16
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Fig. 17 Visual perception of the load-balancing

represents a paradigm that employs a network of inter-
connected computing entities (nodes) to function cohe-
sively as a singular system, with the principal objective of
augmenting computational capacity and operational effi-
ciency [94]. In contemporary discourse, the incorporation
of metaheuristic algorithms within the realm of cluster
computing has garnered significant attention, particularly
in addressing complex optimization challenges, including
those pertinent to clustering endeavors. The application of
metaheuristics can be tailored for parallel execution within
cluster computing environments [95]. Several metaheuris-
tic algorithms have been proposed to address the com-
plexities of load-balancing in cluster computing
environments. These algorithms leverage nature-inspired
techniques to optimize resource allocation and improve
system performance. PSO [96] is effective in optimizing
load distribution by dynamically adjusting the allocation of
tasks to nodes based on their performance. ACO [97]
excels in finding optimal paths for task allocation, helping
to minimize response times and improve resource utiliza-
tion. GA [98] employs evolutionary principles such as
selection, crossover, and mutation to explore the solution
space for optimal task distribution, making it suitable for
complex load-balancing scenarios. ABC [99] is used for
efficient resource allocation by exploring various solutions
and selecting the best ones based on their fitness. BA [100]
is effective in navigating through solution spaces to
achieve balanced loads across resources. WOA [101]
focuses on finding optimal solutions through a balance of
exploration and exploitation, making it adaptable for
dynamic load-balancing. SA [102] can also lead to better
overall load distribution. These algorithms have been
shown to effectively tackle the challenges associated with
load-balancing in cloud computing environments by opti-
mizing performance metrics such as makespan time,
response time, and resource utilization.

In this section, a specific application of the proposed SD
algorithm in solving the dynamic load-balancing is

presented, which is significantly different from other
methods in terms of performance. Clusters typically consist
of heterogeneous resources with varying capabilities.
Designing a metaheuristic algorithm that effectively allo-
cates tasks while considering these differences is complex
and requires a nuanced understanding of each resource’s
performance characteristics. The complexity of load-bal-
ancing problems often results in a vast solution space,
making it difficult to identify optimal solutions efficiently.
This complexity can lead to longer computation times, as
the algorithm may struggle to explore all potential alloca-
tions effectively. Cluster environments experience fluctu-
ating workloads that can change rapidly. Adapting to these
dynamic conditions while maintaining an optimal load
distribution is a major challenge, as the system must con-
tinuously monitor and adjust allocations in real-time. In
cluster computing environments, nodes may fail or become
unavailable unexpectedly [103]. Ensuring that SD load-
balancing strategies can adapt to such failures without
significant performance impacts is crucial for maintaining
service continuity. As clusters grow in size and complexity,
ensuring that the SD load-balancing method scales effec-
tively becomes increasingly challenging. The algorithm
must handle a larger number of nodes and tasks without
significant performance degradation. SD algorithm may
excel in various performance metrics, such as makespan,
response time, and resource utilization. However, opti-
mizing for one metric often adversely affects another,
creating trade-offs that must be carefully managed. Inte-
grating the SD algorithm into existing cluster infrastruc-
tures can be complex and resource-intensive.

To evaluate the performance in this experiment, the SD
algorithm has been compared with the 10 selected algo-
rithms for the competition mentioned in Sect. 4. For this
purpose, the number of population is considered 10 for all
algorithms. The Number of Function Evaluations (NFE) is
also considered to be 1000. We generated random datasets
to conduct experiments. So that the load capacity is 1000
per node. Each member of the population represents a node
in the network. So there are 10 nodes. Here, the objective
function is to calculate the degree of imbalance in the
network which through the following equation is obtained,

imbalance = |node — average_load| (12)

where the average load is also obtained through,

> tasks
= 13
nodes (13)

The number of tasks is considered to be 500, 5000,
50,000 and 500,000 respectively. Each algorithm is run 30
times independently and according to the objective func-
tion, the maximum average and standard deviation related
to the response time and makespan are recorded. Makespan

average_load =
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Table 24 Makespan and response time related to SD and other competing algorithms for the dynamic load-balancing

50,000

500,000

5517.55 + 47.6514
104.2336 + 3.2325
5504.52 £ 49.5514
104.1245 + 3.1246
5497.52 + 48.6546
104.3254 + 3.0215
5440.17 + 49.5254
100.5589 =+ 2.0058
5263.26 + 37.7818
99.9994 + 0.0098

5489.65 £ 55.6598
100.9854 + 2.9548
5500.96 £ 54.6593
103.2656 + 3.0254
5449.63 + 51.6695
100.5132 + 2.3659
5332.32 &+ 51.2563
99.9998 + 0.0008

5511.64 £+ 50.2121
101.2265 + 2.6698
5262.69 + 36.8927

Algorithm Criteria Number of tasks
500 5000
BBO Makespan 551.21 + 13.2562
Response Time 55.3465 + 2.5654
DE Makespan 550.14 + 13.1456
Response Time 55.0015 =+ 2.4658
GA Makespan 550.98 £ 14.6285
Response Time 54.9687 £ 2.1589
GJO Makespan 540.95 + 17.2516
Response Time 54.0056 £ 1.9986
GPC Makespan 526.11 £+ 13.0788
Response Time 52.4062 + 1.4938
GWO Makespan 544.69 + 19.2565
Response Time 54.1458 + 2.0156
IWO Makespan 549.48 £ 21.9655
Response Time 54.7565 + 2.9654
PSO Makespan 543.95 £+ 23.5649
Response Time 53.8993 + 2.3625
TLBO Makespan 537.61 + 18.2568
Response Time 53.8456 + 1.9865
WSO Makespan 545.25 + 19.6698
Response Time 54.9895 £ 2.3659
SD Makespan 518.44 + 15.0279

Response Time

52.7737 £ 1.7041

99.9970 + 0.0013

56,001.84 + 814.2513
104.6874 + 3.2455
55,857.67 £ 714.5495
104.3245 + 3.0014
54,987.62 £ 778.2565
104.6587 + 3.3325
54,361.84 £ 312.5844
101.0122 + 1.2564
52,510.27 + 128.3241
99.9990 £ 0.0012
54,411.77 £ 309.4971
101.2154 £ 2.7659
55,023.95 £ 361.5656
103.8996 + 2.6695
54,833.84 £ 311.2558
100.8996 + 2.8996
54,251.87 £ 211.5362
99.9999 + 0.0002
54,445.36 £ 308.3368
102.9856 + 2.6969
52,510.27 + 149.7220
99.4165 = 0.0014

568,542.54 £ 997.5295
104.5645 + 3.0254
559,756.94 £ 785.5246
104.4614 £+ 3.0144
550,095.92 £ 875.2548
105.0021 + 3.6547
534,586.48 £ 586.2145
101.2122 + 1.3254
525,010.38 £ 424.7551
99.9946 + 0.0057
539,961.19 £ 459.6365
101.3554 + 2.6595
548,755.88 £ 485.6918
103.5887 £ 3.0023
544,339.99 + 447.6596
101.4256 + 2.6654
533,251.24 £ 632.2112
99.9989 £ 0.0125
538,494.33 £+ 605.3791
102.7858 £ 2.6524
524,997.88 + 400.0256
99.4369 + 0.0013

Load Distribution at

Load Distribution at ion: 5

Load Distril

ion at ion: 10

Response Time: 50.0458

519

Response Time: 50.7595

519

600

Response Time: 51.898
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400
o
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Node Index
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Fig. 18 Performance in load distribution at iteration 1, 5, and 10, respectively (based on one of 30 independent runs)

specifies the completion time of processing of all tasks in
the made schedule. The lower this value means, the algo-
rithm can process and deliver jobs faster. Table 24 shows
the results of the experiments and comparisons of the SD
algorithm with competing algorithms.

As it is clear from the table, the SD algorithm has per-
formed better than other competing algorithms in terms of
response time and makespan. This algorithm also performs
well in load distribution. Figure 18 shows the load distri-
bution at iteration 1, 5, and 10 of the algorithm. The load

@ Springer

distribution is done quickly and this shows the robustness
and good efficiency of the SD algorithm.

By considering both task execution time and system
resources, SD can significantly reduce load imbalances
compared to static methods. SD’s inherent mechanism
allows it to explore multiple solutions simultaneously,
potentially leading to better overall system performance.
The algorithm can dynamically adjust to changes in
workload, making it effective in environments where
demand can fluctuate unpredictably. While SD offers
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significant advantages in adaptability and optimization, its
complexity may introduce higher computational overhead
compared to simpler algorithms like Round Robin. Effec-
tive implementation of SD requires careful tuning of
parameters and may necessitate more sophisticated moni-
toring tools. While SD-based load balancing provides
enhanced adaptability and optimization for dynamic envi-
ronments, traditional algorithms like Least Connections
offer simplicity and lower overhead but may struggle with
uneven workloads. The choice between these approaches
depends on specific use cases, system requirements, and
performance goals. Figure 19 compares load distribution
between the SD algorithm and common load-balancing

Weighted RR
Round Robin

Least Connections

sb

Fig. 19 Comparison of common load-balancing algorithms with SD

Table 25 Comparison SD with common load-balancing algorithms

methods. As the figure shows, the load distribution in the
SD algorithm is more balanced than the common methods.
Tables 25 and 26 show the comparison of the SD algorithm
with common methods and traditional methods,
respectively.

The intricacies of load-balancing issues are frequently
classified as NP-hard, thereby rendering the identification
of optimal resolutions within practical temporal constraints
exceedingly challenging. SD offers an approach capable of
swiftly generating satisfactory solutions, even in complex
contexts. In general, the advantages of SD in solving the
load-balancing problem are summarized in the following
cases:

1. Adaptability and flexibility: The SD algorithm exhibits
a remarkable capacity for adaptation within dynamic
environments. This inherent flexibility facilitates the
modification of load-balancing strategies in response to
fluctuations in workloads and resource availability, a
critical requirement in cluster computing contexts
where conditions may change rapidly.

2. Exploration and exploitation balance: The SD algo-
rithm proficiently reconciles exploration (the pursuit of
new regions within the solution space) and exploitation
(the refinement of already established effective solu-
tions). This attitude is essential for the identification of
optimal or near-optimal solutions within intricate load-
balancing challenges.

3. Domain-agnostic nature: The SD algorithm is broadly
applicable across a multitude of domains, extending
beyond the realm of computing, thereby establishing it
as a versatile tool that can be tailored to various system
architectures and characteristics.

Feature Algorithm

Round robin Weighted RR Least connections Resource-based SD load-balancing
Nature Static Static with weights Dynamic Dynamic Dynamic and adaptive
Task Evenly distributes  Distributes based on Routes to the least Considers real-time Optimizes based on fitness

Distribution

tasks

assigned weights

busy server

Scalability Simple but can lead Better scalability with ~ Good scalability,
to imbalances weighted nodes especially under load
Complexity Simple to Moderate complexity Moderate complexity;
implement due to weight needs monitoring
management
Performance = May underperform  Better performance Efficient under varying
if nodes are with heterogeneous connection loads
unequal nodes
Overhead Low overhead Moderate overhead Moderate overhead for
from weight monitoring
calculations connections

resource usage

Excellent scalability
based on metrics

High complexity;
requires continuous
monitoring

High performance by
optimizing resource
use

High overhead from
continuous
monitoring

values

Highly scalable; adapts to

workload changes

More complex due to

optimization calculations

Can achieve optimal
performance through
optimization

Higher computational
overhead due to
optimization
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Table 26 Comparison SD with traditional dynamic load-balancing algorithms

Feature/Algorithm SD load-balancing

Traditional dynamic algorithms

Nature Metaheuristic, adaptive

Task distribution Optimizes based on real-time metrics

Scalability Highly scalable; adapts to workload changes
Complexity More complex due to optimization calculations
Overhead Higher computational overhead due to optimization
Performance Can achieve optimal performance through optimization

Energy efficiency

Improved energy consumption through optimized load distribution

Heuristic or rule-based

Distributes tasks based on predefined rules
Varies; may struggle with high variability
Generally simpler and easier to implement
Lower overhead; often less resource-intensive
Performance depends on the algorithm used
May not specifically address energy efficiency

10 Conclusions

In this paper, a novel lightweight algorithm based on
physics was proposed called the Star Death (SD) algorithm.
The aim was to provide an efficient, lightweight, uncom-
plicated, simple, and robust algorithm for solving various
simple and complex problems. This algorithm demon-
strates effectiveness in solving real-world problems,
maintaining diversity, and avoiding local optima. Its resi-
lience and effectiveness make it a powerful tool for opti-
mization, especially in engineering challenges. In this
algorithm, the search and optimization process is carried
out with the inspiration of the process of star death and
using two agents, elite photon and central photon. An elite
strategy is applied, with its exploration range dynamically
adjusted for better solutions. Center-based sampling in the
SD algorithm is beneficial throughout the optimization
process. The method emphasizes the center point’s prox-
imity to solutions, enhancing the optimizer’s effectiveness.
Empirical evidence supports the role of center-based
sampling in improving convergence rates for high-dimen-
sional problems. Parameter interactions in the SD Algo-
rithm help prevent multiple local optima in the parameter
space, ensuring solution quality. The SD algorithm adjusts
parameters adaptively to enhance clarity and understanding
of the parameter space. This algorithm can be used as an
effective optimization method in many problems and fields
of knowledge, including engineering sciences. Experiments
showed that the algorithm can solve problems with high
dimensions. The results obtained from the application of
the algorithm on real-world problems and classic engi-
neering problems showed that the presented algorithm is
fully capable. As a specific application in solving the
dynamic load-balancing in cluster computing, it was
observed that the SD algorithm is able to deal with the
problem. Future research directions for improving meta-
heuristic load-balancing methods in cluster computing
environments can focus on several key areas. Combining
different  metaheuristic ~ algorithms can enhance

@ Springer

performance by leveraging the strengths of each method.
Developing algorithms that can dynamically adapt to
varying workloads and resource availability is crucial.
Future research should explore real-time adjustment
mechanisms that allow load-balancing strategies to respond
effectively to changes in the cluster environment. Load-
balancing often involves optimizing multiple conflicting
objectives, such as minimizing response time while maxi-
mizing resource utilization. Research can focus on multi-
objective optimization methods that effectively balance
these trade-offs.

Appendix A

In this appendix, six classic engineering problems are
detailed.

Gear train design problem

. —
Consider X = [x1x2x3x4] = [manpncnp),
function should be minimized,

o 1 x50\ 2
() = (6.931 x1X4)

Also, the range of
12SX17X2,X3,)€4§60.

the following

(14)

changes of variables are

Pressure vessel design problem

Consider X" = [x;x2x3x4] = [T,TRL], the following func-
tion should be minimized,
f(®) = 0.6224x1x2x3 + 1.778 1xox3 + 3.1661x7x4

+ 19.84x7x; (15)

subject to,
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g1(¥) = —x; +0.0193x3 <0

g2(¥) = —x3 + 0.00954x3 <0
g3(¥) = —mdxy — = 7 + 1296000 < 0 (16)
g4(X) = x4 —240<0

Also, the range of changes of variables are 0 <x; <99,
0<x,<99, 10 <x3 <200, and 10 < x4 <200.

Speed reducer problem

Consider X = [x1X2X3X4X5X6X7] = [bmzlilrd1d,], the fol-
lowing function should be minimized,

F(¥) = 0.7854x1x3(3.33x3 + 14.9334x; — 43.0934
— 1508x; (xg +x3) + 7.4777 (xg + x3)

+ 0.7854 (xsxg + x5x3 ) (17)
subject to,
27
gi1(X) = —-1<0
X1X5X3
. 397.5
§(X) = 55— 1<0
X1X5X3
1.93x;
X) = —-1<0
83(%) X2Xex3 -
o 1.93x3
ga(xX) = 4 21 <0
X2X7X3
2 5
[(745;—;}) +16.9 x 106]
X) = —-1<0
85(%) 1102} =
2 3 (18)
[(745%) +157.5 x 106}
X) = —-1<0
86(%) 85:3 =
L XX
g7(%) = % —1<0
5
g8(®) =22~ 1<0
X1
- X1
=——-1<0
89(X) 1213 S
~ 1.5x¢ + 1.9
g10(X) =0T 7 <0
X4
1.1 1.9
11 (%) _Ler 15 <0
X5
Also, the range of changes of variables are

26<x1<3.6,07<x <08, 17<x3<28, 7.3<x4<8.3,
7.3<x5<83,29<x<3.9,and 5<x;<5.5.

Tension/compression spring design problem

Consider X = [x;x2x3] = [dDN], the following function
should be minimized,

f@) = (x5 + 2)xox] (19)
subject to,
)CZX3
D =1— 1A
§1(%) 71785+ =
. 4x§ — XX 1
829 = 13566 (e — 1) | 51088 (20)
@) =1 140.45x, <
g3 - X%.X3 =
. X1 + X
g4(X) = 11.5 2-1<0
Also, the range of changes of variables are

0.05<x; <2, 0.25<x,<1.3, and 2 <x; < 15.
Three-bar truss design problem

Consider X = [x;x2] = [A1Az], the following function
should be minimized,

@ = (2v20 + %) x 1 1)
subject to,
g1(®) :%P_GSO
82(%) :mP— 7<0 (22)
1
22(%) :mP—USO

where [ = 100cm, P = 2kN /cm?, and ¢ = 2kN /cm?. Also,
the range of changes of variables are 0 <xj,x, <1.

Welded beam design problem

Consider X = [x|xyx3x4] = [hirb], the following function

should be minimized,
f(®) = 1.10471x}x2 + 0.0481 133403 (14 + x7) (23)

subject to,

gﬁ(f) =0.125 — X1 SO
27(X) = 1.10471x% + 0.04811x3x4(14 + x2) —5<0
(24)
where t(¥) = \/(T’)2+2’E/T”§% + (¢”)* in such a way that
2 2
7 = ﬁim and v = P—(LJ;Z)R where in R = /2 + (X—‘;x”)z

and J = 2{\/§x1x2 [%% + (%)2} } Also, we have ¢(X) =
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6PL 2\ _ 6PL
X and o0(X) = B

4.01315\/*'%Z E .
4( 5 —) where P = 6000lb, L = 14in,

2 2L\ 4G

Smax = 0.25in, E =3 x 10°psi, G =12 x 10° psi,
Tmax = 13600psi, and ¢,,,, = 30000 psi. Moreover, the
range of changes of variables are 0.1 <x; <2,

0.1<x<10,0.1<x3<10, 0.1 <x4 <2,

In addition, we have P.(X)=
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