
Vol.:(0123456789)1 3

Evolutionary Intelligence 
https://doi.org/10.1007/s12065-020-00451-3

RESEARCH PAPER

Giza Pyramids Construction: an ancient‑inspired metaheuristic 
algorithm for optimization

Sasan Harifi1   · Javad Mohammadzadeh1 · Madjid Khalilian1 · Sadoullah Ebrahimnejad2

Received: 4 March 2020 / Revised: 25 April 2020 / Accepted: 2 July 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Nowadays, many optimization issues around us cannot be solved by precise methods or that cannot be solved in a reasonable 
time. One way to solve such problems is to use metaheuristic algorithms. Metaheuristic algorithms try to find the best solution 
out of all possible solutions in the shortest time possible. Speed in convergence, accuracy, and problem-solving ability at high 
dimensions are characteristics of a good metaheuristic algorithm. This paper presents a new population-based metaheuristic 
algorithm inspired by a new source of inspiration. This algorithm is called Giza Pyramids Construction (GPC) inspired by 
the ancient past has the characteristics of a good metaheuristic algorithm to deal with many issues. The ancient-inspired is 
to observe and reflect on the legacy of the ancient past to understand the optimal methods, technologies, and strategies of 
that era. The proposed algorithm is controlled by the movements of the workers and pushing the stone blocks on the ramp. 
This algorithm is compared with five standard and popular metaheuristic algorithms. For this purpose, thirty different and 
diverse benchmark test functions are utilized. The proposed algorithm is also tested on high-dimensional benchmark test 
functions and is used as an application in image segmentation. The results show that the proposed algorithm is better than 
other metaheuristic algorithms and it is successful in solving high-dimensional problems, especially image segmentation.

Keywords  Metaheuristic · Optimization · Giza Pyramids Construction algorithm · GPC algorithm · Ancient-inspired · 
High-dimensional tests · Image segmentation · Benchmark test functions

1  Introduction

Optimization applications are numerous. Each process has 
the potential to be optimized. There are no companies and 
institutions that not involved in optimization. Many challeng-
ing applications in science and technology can be formulated 
as an optimization problem. Optimization can reduce time, 
cost and risk or increase profit, quality, and efficiency. In 

the industry, for example, there are cost and service quality 
optimization. There are also many ways to optimize time 
for product planning. There are many optimization issues in 
science, engineering, economics and business that are dif-
ficult to solve [1]. They are not solved accurately and within 
a reasonable time. Using the approximation algorithm is the 
main option to solve these problems.

Approximate algorithms are classified into two catego-
ries: heuristic and metaheuristic. Heuristics depend on the 
type of problem. They are usually designed and used for 
specific issues. Metaheuristics are more popular and are used 
for many issues [2]. They can be used for almost any kind of 
problem. The metaheuristic solves problems that seem to be 
difficult, by searching for a large space of solutions. These 
algorithms achieve this goal by effectively exploring space 
and reducing the size of the solution space. Metaheuris-
tics solve problems faster, solve bigger problems, and are 
stronger algorithms. They are also very flexible and easy to 
design and implement.

The metaheuristic is a branch of optimization in computer 
science and applied mathematics that deals with complex 

 *	 Sasan Harifi 
	 s.harifi@kiau.ac.ir

	 Javad Mohammadzadeh 
	 j.mohammadzadeh@kiau.ac.ir

	 Madjid Khalilian 
	 khalilian@kiau.ac.ir

	 Sadoullah Ebrahimnejad 
	 ibrahimnejad@kiau.ac.ir

1	 Department of Computer Engineering, Karaj Branch, 
Islamic Azad University, Karaj, Iran

2	 Department of Industrial Engineering, Karaj Branch, Islamic 
Azad University, Karaj, Iran

http://orcid.org/0000-0002-6788-8222
http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00451-3&domain=pdf


	 Evolutionary Intelligence

1 3

computation theory and algorithms. It also covers other 
areas such as artificial intelligence, computational intel-
ligence, soft computing, mathematical programming, and 
operations research. In practice, metaheuristics have been 
very effective in solving complex real-world problems, and 
have also played a significant role in reducing costs and 
expanding rapidly in various fields [3].

The metaheuristics include the following categories. 
These are Evolutionary-based, Trajectory-based, and Nature-
inspired methods. We do not claim that this categorization 
is unique. Some algorithms can fall into several different 
categories.

Evolutionary models are an abstract model of biological 
evolution in which populations that are considered candi-
dates for a solution are frequently exposed to natural selec-
tion or genetic diversity [4]. Evolutionary is modeled on the 
concept of competition. This type of metaheuristics simu-
lates species evolution. They are based on the evolution of 
the population. Populations are usually randomly generated, 
and each individual is actually a solution. An objective func-
tion determines which solution is appropriate. At each stage 
according to the pattern of choice, anyone who has better 
suitability is selected with a higher probability. Then the 
population selected are reproduced by different operators 
to create a new generation of offspring. These operators are 
usually crossover and mutation. Finally, an alternative plan 
is applied to determine which of the offspring and parents 
will remain. Some of the popular evolutionary-based tech-
niques are Genetic Algorithm (GA) [5], Memetic Algorithm 
(MA) [6], Differential Evolution (DE) [7], Harmony Search 
(HS) [8], Clonal Selection Algorithm (CSA) [9], and so on.

Trajectory-based are methods that work on a solution. 
In this way, the problem space is searched with a path [10]. 
The characteristics of these methods are usually determined 
by the type of problem. Trajectory-based metaheuristics 
improve a single solution. These are carried out with repeti-
tive routines through which they move from one solution to 
another. It has shown its effectiveness in a variety of issues. 
Some of the popular techniques in this category are Simu-
lated Annealing (SA) [11], Tabu Search (TS) [10], Iterated 
Local Search (ILS) [12], Guided Local Search (GLS) [13], 
Greedy Randomized Adaptive Search Procedure (GRASP) 
[14], Variable Neighborhood Search (VNS) [15], and so on.

Nature-inspired are methods that follow the laws of 
nature. Nature has simple and understandable laws. In fact, 
the collective behavior of most organisms is as a seeker in 
the problem space that leads to the goal and solution [16]. 
Nature-inspired itself contains Swarm-based, Bio-inspired, 
Physics/Chemistry-based, Human-based, and Plant-based 
methods. Swarm-based is about group behaviors and swarm 
intelligence of a set of beings. Swarm can be defined as an 
organized set of agents or entities that work together. It can 
be an example of the lives of ants, bees, termites, fish, and 

birds. Many swarm-based algorithms are presented such as 
Particle Swarm Optimization (PSO) [17], Firefly Algorithm 
(FA) [18], Artificial Bee Colony (ABC) [19], Ant Colony 
Optimization (ACO) [20], Emperor Penguins Colony (EPC) 
[21], and so on. It is true that swarm intelligence algorithms 
can be considered as a subset of bio-inspired algorithms. 
But many bio-inspired algorithms do not directly use swarm 
behavior. So it is better to put them in a separate subset 
namely Bio-inspired. The Krill Herd Algorithm (KHA) 
[22], Crow Search Algorithm (CSA) [23], Grey Wolf Opti-
mizer (GWO) [24], Owl Search Algorithm (OSA) [25], Ant 
Lion Optimizer (ALO) [26], and so on are examples of bio-
inspired algorithms. As mentioned earlier, sometimes algo-
rithms can be in several categories. Physics/Chemistry-based 
are mostly created by imitating the laws of physics or chem-
istry. These features and laws include electrical charge, grav-
ity, physical and chemical changes of materials, and so on. 
From this subset we can refer to Chemical Reaction Opti-
mization (CRO) [27], Black Hole (BH) [28], Multi-Verse 
Optimizer (MVO) [29], Thermal Exchange Optimization 
(TEO) [30], and so on. Human-based methods models all 
the individual and social behaviors of human. This subset 
includes individual behaviors such as how humans search 
for and adapt to the environment, and how human beings 
behave with different emotions. Social behaviors, such as 
the chaos that occurs in society, the way human beings work 
together or even imperialist can also be modeled. The most 
popular algorithms in this subset are Imperialist Competi-
tive Algorithm (ICA) [31], Cultural Algorithm (CA) [32], 
Teaching–Learning-Based Optimization (TLBO) [33], and 
recently published Political Optimizer (PO) [34]. Plant-
based methods are inspired by the process of plant growth, 
plant dispersal, root and plant expanding, and so on. In gen-
eral, any algorithm that somehow models a plant falls into 
this subset. Example of algorithm in this subset are Invasive 
Weed Optimization (IWO) [35], and Artificial Root Forag-
ing Algorithm (ARFA) [36].

The ancient past is the new ideology and origin of inspi-
ration that introduced by this paper for the first time. In 
the ancient past there were numerous limitations, but vari-
ous man-made structures show that the limitations and the 
lack of hardware and software facilities have given rise 
to some sort of optimization in ancient times. The Giza 
Pyramids Construction1 (GPC) optimization algorithm is 
also presented as the first ancient-inspired metaheuristic 
algorithm. Figure 1 shows the classification of metaheuris-
tics explained in this paper. In this figure, the existing clas-
sifications and the position of the new ancient-inspired 

1  Source codes of GPC are publicly available at www.harif​i.com.

http://www.harifi.com


Evolutionary Intelligence	

1 3

category are shown. This new inspiration can include all 
the features of the existing inspirations.

The main contribution and innovation of this paper 
is the use of a novel and efficient source of inspiration 
compared to existing sources of inspiration. This novel 
source of inspiration is actually a combination of evolu-
tion and nature with many new features that the existence 
of limitation in the ancient past has led to the flourishing 
of its capabilities. The main goal of this study is to pro-
vide a new metaheuristic algorithm based on this novel 
source of inspiration, as well as to test and apply it to a 
specific application to show that this approach is feasible 
and reliable.

As mentioned earlier, metaheuristics are used in almost 
every field. These fields range from computer science [2] to 
industry [37] or civil engineering [38]. Their applications 
are also varied, for example in computer science they can 
be used to optimize fuzzy systems [39], feature selection 
[40, 41], information retrieval [42], and so on. In this paper 
as an application, we decided to apply the proposed algo-
rithm in image segmentation. Image segmentation is the 
process of dividing an image into homogeneous areas can 
be considered a high-dimensional problem. Segmentation 
is important because it prepares the image for applications 
such as machine vision, and image analysis including medi-
cal images, satellite images, and so on.

Therefore, the experiments performed in this paper are 
divided into two parts. The first is related to the standard 
experiment using benchmark test functions, which are per-
formed in two ways: low-dimensions and high-dimensions. 
The second is related to the experiment of application in 

image segmentation, which is itself an example of a high-
dimensional problem.

The remainder of this paper is structured as follows: 
Sect.  2 introduces ancient-inspired ideology. Section  3 
describes Giza Pyramids Construction (GPC) algorithm. 
Section 4 includes experimental results and discussion. Sec-
tion 5 provides the statistical analysis. Section 6 represents 
high-dimensional tests. Section 7 presents application in 
image segmentation. Finally, Sect. 8 represents conclusions.

2 � Ancient‑inspired ideology

Ancient refers to past events from the beginning of the writ-
ing and recording of the history of humanity to the begin-
ning of the post-classical period [43, 44]. The length of this 
period is approximately 5000 years. Historians consider 
the end of this period to be 500 AD. There are two ways 
to better understand this era. The first is through archeol-
ogy. Archeology is the exploration and study of ancient 
artifacts to interpret and reconstruct human past behavior 
[45]. Archaeologists are searching the ruins of ancient cit-
ies to find clues about the lifestyle and the time period [46]. 
The second way is through studying textual sources. Textual 
sources are narratives of ancient historians [47]. Many of the 
events described by them are based on an understanding of 
ancient history.

In the ancient past, productive work enabled humans to gain 
wealth. In fact, work was a religious duty and a moral virtue in 
public morality. The technical skills were highly commended. 
Work and technical skills were the core of human intelligence 

Fig. 1   Classification of metaheuristic algorithms



	 Evolutionary Intelligence

1 3

and the key to understanding nature. This core and this key 
gradually led to the emergence of superior technologies in the 
ancient past [48]. One of the most attractive parts of ancient 
times is the study of ancient technology and science. In history, 
technology and ancient science evolved during the develop-
ment of ancient civilizations and technological advances in 
engineering [49]. Among the technologies can be mentioned 
such as Egyptians, Indians, Chinese, Greeks, Romans and Ira-
nians technologies.

The fact is that the advanced civilizations mentioned cre-
ated the knowledge infrastructures on a large scale so that 
these infrastructures were not found elsewhere. This knowl-
edge infrastructure has evolved into an integrated network with 
the spread of civilizations, where science and technology have 
been easily circulated. In these civilizations, the elites have 
always strived to acquire each other’s technical knowledge 
[50]. An essential element in the development of antiquity 
construction has been the use of pre-manufactured standard-
size materials. This greatly reduced construction costs and 
improved development time. In ancient Egyptian civilization, 
for example, stones were brought to the site to prepare the 
pyramids [50]. Technology in the ancient past was always 
used to optimize and reduce costs. Certainly, inventions such 
as concrete and standard building materials would definitely 
cost less for construction projects and give more freedom to 
the architects of the structural design. Also, innovations in 
construction could create large-scale complex structures with 
low cost. Standardization of building materials and the crea-
tion of manufacturing technologies could even reduce labor 
costs [50].

In general, the emergence of construction techniques and 
the use of new strategies by builders has been a major innova-
tion that has had a profound impact on the social, economic 
and cultural history of ancient civilizations. The question, 
however, is how the workforce management strategy has been 
and how it has been used. Looking at some of the monuments 
and artifacts from antiquity and estimating the time of con-
struction of these monuments and considering the emergence 
of new technology and the lack of advanced technology at that 
time, it raises the question that how was the optimization strat-
egies in construction these buildings and monuments [50]. The 
ancient-inspired ideology is the observation and thinking about 
the remnants and legacies of antiquity and the understanding 
of the management and strategy used in that era to advance 
civilization and optimize and reduce the cost of living.

3 � Giza Pyramids Construction (GPC) 
algorithm

The Giza Pyramids complex, also known as Giza Necropo-
lis, is a site that has three large pyramids, all built during the 
fourth dynasty of ancient Egypt [51]. The largest pyramid, 

also known as the Seven Wonders, is called the Khufu Pyra-
mid. The other two pyramids are named Khafre and Men-
kaure [52]. According to archaeologists, the method of con-
struction is different from each other because construction 
of pyramids have been developed over time. How to manage 
the workers was the most important issue in building the 
pyramids. Due to the lack of hardware facilities, relatively 
short construction time and the large number of stone blocks 
used in the pyramids, its construction has been optimized. 
In this section, the construction method, the inspiration, and 
the proposed algorithm are described in detail.

3.1 � The construction

Many theories have been put forward about the pyramids 
construction methods, none of which is hundred percent 
approved. Many believe that the stones of this pyramids 
were removed from mines, shipped and then placed in 
place. Such a way that, they used ramps to mount them at 
higher levels [53, 54]. The Greeks believed that slaves were 
exploited in the construction of the pyramids, but new find-
ings suggest that the creators of the pyramids were skilled 
workers who lived well in the surrounding villages. The 
labor force needed to build the pyramids was an average of 
fourteen thousand people and a maximum of forty thousand 
[55]. Without the use of metal tools, wheels and other tools, 
these pyramids were built over a period of 10–20 years. The 
number of blocks used in the largest pyramid is two mil-
lion pieces. The workers, including slaves, coolies, masons, 
metalworkers, carpenters, and foreman.

In addition to the challenges of project construction, there 
is a need for an advanced approach to project management, 
construction management and method of construction. The 
project involved building a prominent construction plant. 
Issues such as feeding, housing, the payment of workers’ 
salaries, and work scheduling for timely completion before 
the death of the pharaoh were also considered [56]. The 
pyramid stands today as awesome testimony to the skill and 
sheer determination of the ancient race that built it. The 
complexity and logistical requirements of this project are 
simply extraordinary.

3.2 � The inspiration

As noted, the workers are slaves, coolies, masons, metal-
workers, carpenters, led by an expert agent. This expert 
agent is a foreman called Pharaoh’s special agent. Workers 
carry stone blocks. This is done under the direct supervi-
sion of the Pharaoh’s agent. There may be different workers 
each responsible for carrying a stone block. The task report 
should be regularly given to Pharaoh’s special agent. This 



Evolutionary Intelligence	

1 3

task is performed by each worker. Figure 2 illustrates an idea 
of how these factors do the job, namely the simple worker, 
and the Pharaoh’s special agent.

The workers at the construction site each have a position. 
A worker who does his job better will receive sublime rank 
as a reward. So there is a competition to get sublime rank. 
The best rank is related to Pharaoh’s special agent. Also, 
the energy lost during the stone block transport phase may 
cause workers to rest for some time. If a worker loses too 
much power or gets tired, he will be substituted by young 
blood and energetic workers. This means that if there is no 
improvement in the workforce, it must be substituted with a 
new one. The weak worker may be more efficient elsewhere. 
In addition to competing for sublime rank, there is another 
motivational competition among workers as each can gain 
experience and expertise.

During the pyramid construction process, stone blocks 
that are scattered by agents such as miners around the con-
struction site are carried by the workers to the construction 
site. This is done every day so that the stone blocks are col-
lected from around and dragged to the pyramid. Ramps were 
used to build the pyramid. The distance between the stone 
block and the location of its installation in the pyramid must 
be traveled. The distance traveled to push the stone is meas-
ured by the ability of the workers. During the workday, if 
enough power is available, more shipment will be carried out 
by the workers, making the block closer to the installation 
site in the pyramid. It should be noted, the ramp gradient, 
initial velocity, and friction force influence the movement 
of the stone block.

3.3 � The proposed algorithm

Suppose that stone blocks are scattered around the con-
struction site. Workers have to push the stone blocks to 
the installation place. The initial position of each block 
and its cost are known. Ramps are used to move the stone 

blocks to the installation place. The slope of the ramp and 
its friction affect the displacement of the stone blocks. 
Also, the workers themselves are constantly moving to 
find the best position to dominate the stone block. Due to 
the different characteristics of each worker, it is possible 
to substitute workers to balance the power of the workers 
for carrying a stone block. Therefore, the position of some 
workers will be substituted with others. This substituting 

Fig. 2   Subjective perception of Pharaoh’s special agent and workers

Fig. 3   Flowchart of the proposed GPC



	 Evolutionary Intelligence

1 3

causes a change in the stone block displacement system 
and the power balance. Algorithm 1 describes pseudo-
code of the GPC algorithm. Also, Fig. 3 shows the flow-
chart of the algorithm. For this algorithm, there are some 
rules as follows:

1.	 The pyramids were built by using a straight-on ramp.
2.	 It is assumed that only one ramp is used.
3.	 In the algorithm, the angle the ramp makes with the 

horizon is less than 15° and can be variable. (Archae-
ologists believe that the angle was between 8° and 12° 
[57]).

4.	 The solutions are derived from the resultant of worker 
position and stone block. Because the worker is actually 
pushing the stone block.

5.	 Friction is effective in the displacement of a stone block 
but is not considered for workers.

6.	 During the construction process, some workers are prob-
ably to be substituted and put into a new position.

Fig. 4   Position of the object and the coordinate axis on the ramp

Fig. 5   The forces acting on the object

Here we need the equations for movement of an object on 
the inclined plane or ramp. Given that the object (stone 
block) moves along the inclined plane or ramp, the coordi-
nate axis is adjusted so that the direction of the x-axis is in 
the direction of acceleration. By selecting this coordinate 

axis, the force applied to the object is not positioned hori-
zontally and vertically. In this way, we have the mass force 
on the axis. The illustration is shown in Fig. 4. And from 
now on, instead of the mass, we plot the forces that have 
been decomposed from the mass.



Evolutionary Intelligence	

1 3

Now, given the essence of the algorithm, each stone 
block is pushed upward by the initial velocity v0 on the 
ramp. Therefore, the stone block stops after traversing dis-
tance d on the ramp. The forces applied to the stone block 
are illustrated in Fig. 5.

As shown in Fig. 5, fk is the kinetic friction force, and 
since the stone block is at the threshold of displacement, fk 
can be obtained from the following equation by the general 
equation of maximum static friction force,

where m is the mass of the stone block, g is the gravity of 
the earth, � is the angle that the ramp makes with the hori-
zon, and �k is the kinetic friction coefficient. Because we 
are on the x-axis, according to Newton’s second law namely 
∑

F⃗ = ma⃗ , we have,

where a is acceleration. By placing the Eq. 1 in the Eq. 2, 
the acceleration of the stone block upward on the ramp is 
obtained. Therefore, we have,

Here, we need a time-independent equation of motion under 
constant acceleration, which can be obtained using the fol-
lowing equation to calculate the displacement of a stone 
block on the ramp,

where d is the value of displacement. g is gravity the Earth 
as mentioned earlier. The value of g is 9.8. � is the angle that 

(1)fk = �kmg cos �

(2)−mg sin � − fk = ma

(3)a = −g
(

sin � + �k cos �
)

(4)d =
v2
0

2g
(

sin � + �k cos �
)

the ramp makes with the horizon. v0 is the initial velocity 
of the stone block and in the algorithm is determined by a 
uniformly distributed random number in each iteration. With 
this arrangement, if a worker applies force to a stone block, 
the stone block starts moving at an initial velocity. Accord-
ing to the physical sciences, the force of friction causes 
the stone block to stop after a while. So the worker applies 
another force on the stone block again so that the stone block 
starts moving again at an initial velocity. In each iteration 
of the algorithm, the initial velocity is considered a random 
number, because each time the worker attempts to move the 
stone block, the applied force varies according to the power 
consumed by the worker. Thus, for v0 we have,

In fact, rand(0, 1) is a random number between 0 and 1, 
namely 0 < v0 = rand(0, 1) < 1 . Also, �k is the kinetic coef-
ficient of friction between the stone block and the ramp and 
in the algorithm is determined by the uniformly distributed 
random number. So for �k , we have,

In the algorithm, the minimum �k and the maximum �k 
are predetermined, then a random number between these two 
values is assumed in each iteration. In the other words, �k is 
�k_min ≤ �k ≤ �k_max . The reason for the randomness of the 
amount of friction is that the ramp surface is not polished, 
and due to possible unevenness in some parts, friction may 
increase or decrease.

The basic idea of the algorithm is that the workers push-
ing the stone block are constantly moving or shaking to gain 
the best dominate and best control of the stone block. These 
shocks cause the worker to perform non-repetitive move-
ments to push the stone block better. Figure 6 illustrates the 
subjective perception of this movement.

As mentioned earlier, the Eq. 4 determines the amount of 
stone block displacement relative to its previous position. 
This equation is used with little change to determine the 
new position of the worker. For the worker, friction is not 
considered. Thus, the new position of the worker pushing the 
stone block is obtained from the following equation,

that is the Eq. 4 regardless of friction. In this equation, x is 
the amount of worker movement as shown in Fig. 6. The 
worker moves upwards with the stone block and simultane-
ously applies force to the stone block. The goal here is for 
workers to have better control over the rock block with their 
small motions. But the worker also has the initial velocity. So 
for the worker, the friction is not considered. As mentioned 

(5)v0 = rand(0, 1)

(6)�k = rand
[

�k_min,�k_max

]

(7)x =
v2
0

2g sin �

Fig. 6   Subjective perception of worker moving or shaking to gain the 
best dominate and best control of the stone block



	 Evolutionary Intelligence

1 3

earlier, this is one of the rules for the algorithm. After cal-
culating the changes of stone block displacement and worker 
movement through the Eqs. 4 and 7, a new position can be 
obtained from the resultant of these two equations. This new 
position is a new solution. So, in the algorithm to get a new 
solution, we have,

where in the Eq. 8, ��⃗pi is the current position, d is the dis-
placement value of the stone block (Eq. 4), x is the amount 
of worker movement (Eq. 7), and ��⃗𝜖i is a random vector that 
follows the Uniform, Normal or Lévy distribution. In this 
way, the new position is obtained by adding the displace-
ment of the stone block to the previous position, which is 
multiplied by the amount of worker displacement. Multiply-
ing this value determines the position of the worker around 
the stone block for the next iteration.

Sometimes, during the construction of the pyramids, the 
worker lost his ability or lose his power, as a result, he was 
substituted by another. This substituting was done to balance 
the power. In this way, the workers were used to carry the 
fitted stone block in their own accord, given their strength 
and abilities. So a worker who has not efficiency in his own 
position, maybe in some other positions, efficiency will 
come. This substituting operation is performed in the algo-
rithm with fifty percent probability (by default). Therefore, 
there is a fifty percent chance of one worker being substi-
tuted with another in each iteration. The use of substituting 
operation is very similar to a uniform crossover operator. 
It is assumed, if the primary solutions of the problem are 
� =

(

�1,�2,… ,�n

)

 and the generated solutions using the 
Eq. 8 are � =

(

�1,�2,… ,�n

)

 , with a fifty percent prob-
ability, some of the primary solutions will be substituted 
with the generated solutions. So we will have new solutions, 
Z =

(

�1, �2,… , �n
)

 . As such, the following relationship is 
used to substitution,

4 � Experimental results and discussion

This section describes the experiments performed to evalu-
ate the performance of the GPC algorithm. In the experi-
ments, thirty standard benchmark test functions [58] were 
used to evaluate performance. In applied mathematics, the 
test functions are known as artificial landscapes. These func-
tions are useful for evaluating the characteristics of optimi-
zation algorithms. Also, these functions can be used to eval-
uate the accuracy, performance, efficiency and convergence 

(8)p⃗ =
(

p⃗i + d
)

× x��⃗𝜖i

(9)�k =

{

�k, if rand[0, 1] ≤ 0.5

�k, otherwise

rate of optimization algorithms. The benchmark functions 
used are presented in Table 1.

For validation and performance evaluation, the proposed 
algorithm is compared with five improved and popular 
algorithms. These algorithms are Genetic Algorithm (GA), 
Imperialist Competitive Algorithm (ICA), Particle Swarm 
Optimization (PSO), Differential Evolution (DE), and Firefly 
Algorithm (FA).

In order that, the experiment results are comparable, the 
settings of all algorithms are similar to each other. For this 
purpose, the initial population for all algorithms is consid-
ered 20. Also, the number of decision variables for all algo-
rithms is considered 30. Decision variables also determine 
the dimensions of the problem. The experiment process is 
performed as each algorithm is run 50 times and the mean 
and standard deviation of these 50 independent runs are 
recorded. Some parameters of some algorithms are tune-up 
manually. For example, the crossover and mutation rates in 
the GA are tune-up manually to obtain the best solutions. 
It should be noted that the type of crossover used in the 
implemented DE algorithm is binomial crossover. Also, the 
crossover and mutation type used in the implemented GA 
are arithmetic crossover and Gaussian mutation, respec-
tively. The values of all parameters for each algorithm are 
shown in Table 2. The stop condition of all algorithms is 
the Number of Function Evaluations (NFE). This means 
that in our experiments, the algorithms stop after NFE calls 
and the results are recorded. This allows the algorithms to 
be compared in equal terms if the algorithms differ in time 
complexity. All evaluation experiments have been run on 
an Intel® Pentium® processor CPU G645 2.90 GHz with 
2 GB RAM. Implementations have been run on MATLAB 
R2015b for coding.

The performance results of the algorithms are shown in 
Table 3. Here we have to explain that for some functions 
the number of calls is 1000 (103) NFE calls and for others, 
it is 10,000 (104) NFE calls. The difference is because some 
test functions are difficult and require more NFE calls to get 
better solutions. The results show that in general, the GPC 
algorithm is more successful than other algorithms in find-
ing optimal solutions.

The Bohachevsky 
(

f3
)

 and Booth 
(

f4
)

 functions are con-
vex, unimodal, and defined for two-dimensional space. The 
best solutions for these functions are related to the GPC 
algorithm and after the GPC algorithm, the DE algorithm 
provides the best solutions. For the Bukin (f5) function, 
which is multimodal, non-differentiable, non-separable 
and defined for two-dimensional space, the GPC algorithm 
provides the best solutions. Matyas 

(

f19
)

 , Sphere 
(

f27
)

 , and 
Sum-Squares 

(

f29
)

 functions are almost simple functions, 
these functions are convex, unimodal and differentiable, 
except that Matyas is non-separable while Sphere and Sum-
Squares are separable. For these three functions, the best 



Evolutionary Intelligence	

1 3

Table 1   Standard benchmark test functions

Function name Equation Range f (x ∗)

Ackley
f1(x) = −20 exp

�

−0.2

�

1

d

∑d

i=1
x2
i

�

− exp

�

1

d

∑d

i=1
cos

�

2�xi
�

�

+ 20 + exp
[−32.768, 32.768] 0

Beale f2(x) =
(

1.5 − x1 + x1x2
)2

+
(

2.25 − x1 + x1x
2

2

)2
+
(

2.625 − x1 + x1x
3

2

)2 [−4.5, 4.5] 0

Bohachevsky f3(x) = x2
1
+ 2x2

2
− 0.3 cos

(

3�x1
)

− 0.4 cos
(

4�x2
)

+ 0.7 [−100, 100] 0
Booth f4(x) =

(

x1 + 2x2 + 7
)2

+
(

2x1 + x2 + 5
)2 [−10, 10] 0

Bukin
f5(x) = 100

√

|

|

|

x2 − 0.01x2
1

|

|

|

+ 0.01|
|

x1 + 10|
|

[−3, 3] 0

Camel Six-Hump
f6(x) =

(

4 − 2.1x2
1
+

x4
1

3

)

x2
1
+ x1x2 +

(

−4 + 4x2
2

)

x2
2

[−3, 3] − 1.0316

Camel Three-Hump
f7(x) = 2x2

1
− 1.05x4

1
+

x6
1

6
+ x1x2 + x2

2

[−5, 5] 0

Cross-In-Tray
f8(x) = −0.0001

�

�

�

�

�

�

�

sin
�

x1
�

sin
�

x2
�

exp

�

�

�

�

�

�

100 −

√

x2
1
+x2

2

�

�

�

�

�

�

�

�

�

�

�

�

�

+ 1

�0.1 [−10, 10] − 2.06261

De Jong
f9(x) =

�

0.002 +
∑25

i=1

1

i+(x1−a1i)
6
+(x2−a2i)

6

�−1 [−65.536, 65.536] 0

Dixon Price f10(x) =
�

x1 − 1
�2

+
∑d

i=2
i
�

2x2
i
− xi−1

�2 [−10, 10] 0

Drop-Wave
f11(x) = −

1+cos

�

12

√

x2
1
+x2

2

�

0.5(x21+x
2

2)+2

[−5.12, 5.12] − 1

Easom f12(x) = − cos
(

x1
)

cos x2exp(−
(

x1 − �
)2

− (x2 − �)2) [−100, 100] − 1

Eggholder
f13(x) = −

(

x2 + 47
)

sin

(

√

|

|

|

x2 +
x1

2
+ 47

|

|

|

)

− x1 sin

(

√

|

|

|

x1 −
(

x2 + 47
)

|

|

|

)

[−512, 512] − 959.6407

Griewank
f14(x) =

∑d

i=1

x2
i

4000
−
∏d

i=1
cos

�

xi
√

i

�

+ 1
[−600, 600] 0

Holder-Table
f15(x) = −

�

�

�

�

�

�

sin
�

x1
�

cos(x2)exp

�

�

�

�

�

�

1 −

√

x2
1
+x2

2

�

�

�

�

�

�

�

�

�

�

�

�

�

[−10, 10] − 19.2085

Hyper-Ellipsoid f16(x) =
∑d

i=1

∑i

j=1
x2
j

[−65.536, 65.536] 0

Levy f17(x) = sin
2
�

��1

�

+
∑d−1

i=1

�

�i − 1
�2�

1 + 10sin
2
�

��i + 1
��

+
�

�d − 1
�2�

1 + sin
2
�

2��d

��

[−10, 10] 0

Levy N.13 f18(x) = sin
2
(

3�x1
)

+
(

x1 − 1
)2[

1 + sin
2
(

3�x2
)]

+
(

x2 − 1
)2[

1 + sin
2
(

2�x2
)]

[−10, 10] 0

Matyas f19(x) = 0.26
(

x2
1
+ x2

2

)

− 0.48x1x2 [−10, 10] 0
Michalewicz

f20(x) = −
∑d

i=1
sin(xi)sin

2m
�

ix2
i

�

�

[0,�] − 1.8013

Powell f21(x) =
∑d∕4

i=1

�

�

x4i−3 + 10x4i−2
�2

+ 5
�

x4i−1 + x4i
�2

+
�

x4i−2 + 2x4i−1
�4

+ 10
�

x4i−3 + x4i
�4
�

[−4, 5] 0

Rastrigin f22(x) = 10d +
∑d

i=1

�

x2
i
− 10 cos

�

2�xi
��

[−5.12, 5.12] 0

Rosenbrock f23(x) =
∑d−1

i=1

�

100
�

xi+1 − x2
i

�2
+
�

xi − 1
�2
�

[−5, 10] 0

Schaffer N.2
f24(x) = 0.5 +

sin
2 (x21−x

2

2)−0.5

[1+0.001(x21+x
2

2)]
2

[−100, 100] 0

Schaffer N.4
f25(x) = 0.5 +

cos (sin (|x21−x
2

2|))−0.5

[1+0.001(x21+x
2

2)]
2

[−100, 100] 0.292579

Shubert f26(x) =
�

∑5

i=1
i cos((i + 1)x1 + i

�

)

�

∑5

i=1
i cos((i + 1)x2 + i

�

) [−10, 10] − 186.7309

Sphere f27(x) =
∑d

i=1
x2
i

[−5.12, 5.12] 0

Sum-Powers f28(x) =
∑d

i=1
�

�

xi
�

�

i+1 [−1, 1] 0

Sum-Squares f29(x) =
∑d

i=1
ix2

i
[−10, 10] 0

Zakharov
f30(x) =

∑d

i=1
x2
i
+

�

∑d

i=1
0.5ixi

�2

+

�

∑d

i=1
0.5ixi

�4 [−5, 10] 0



	 Evolutionary Intelligence

1 3

solutions are related to the GPC algorithm. The solutions 
provided by GPC are very different from other algorithms. 
Also in the case of the Sum-Powers 

(

f28
)

 function, which is 
a convex, unimodal, non-differentiable and separable func-
tion, the best solution with a lot of difference is related to 
the GPC algorithm.

In the case of the two functions Hyper-Ellipsoid 
(

f16
)

 and 
Zakharov 

(

f30
)

 , which are convex, unimodal and defined for 
n-dimensional space, the best solutions are also related to the 
proposed GPC algorithm. The three functions Dixon Price 
(

f10
)

 , Rastrigin 
(

f22
)

 , and Rosenbrock 
(

f23
)

 are difficult, con-
vex, multimodal, differentiable, and defined for the n-dimen-
sional space. For these three functions, GPC also provides 
the best solutions. In the case of the Rastrigin function, the 
GPC algorithm finds the best possible optimal solution in 

every 50 independent runs. The functions of Griewank 
(

f14
)

 , 
Schaffer N.2 

(

f24
)

 , and Schaffer N.4 
(

f25
)

 are non-convex, 
unimodal, differentiable, non-separable, and defined for two-
dimensional space. The GPC provides the best solutions for 
these functions with the explanation that for the Schaffer N.2 
function the best possible optimal solution is found for all 
50 independent runs.

The functions Ackley 
(

f1
)

 , Beale 
(

f2
)

 , Camel Six-Hump 
(

f6
)

 , Camel Three-Hump 
(

f7
)

 , Easom 
(

f12
)

 , Levy 
(

f17
)

 , Levy 
N.13 

(

f18
)

 , and Shubert 
(

f26
)

 , all are non-convex, multimodal, 
differentiable, and non-separable functions. These func-
tions are defined for two-dimensional space and some for 
n-dimensional space. These functions fall into the category 
of complex functions. In the case of the Camel Six-Hump 
function, the solutions of ICA, DE and GPC algorithms are 
jointly better. In the case of the Levy N.13 function, the 
solutions obtained from the DE algorithm are better than the 
other algorithms. Cross-In-Tray 

(

f8
)

 and Holder-Table 
(

f15
)

 
functions are non-convex, multimodal, non-differentiable 
and non-separable. For Holder-Table, the best solution is 
provided by GPC, but for Cross-In-Tray function, the ICA, 
DE, and GPC are jointly better.

Other functions such as De Jong 
(

f9
)

 , Drop-Wave 
(

f11
)

 , 
Michalewicz 

(

f20
)

 , and Powell 
(

f21
)

 are multimodal and 
non-convex functions. For these functions, the best answers 
with the most differences are related to the proposed GPC 
algorithm. Finally, for the Eggholder 

(

f13
)

 function, which 
is a difficult function to optimize because it has a large local 
optimal value, the best solutions are provided by the GPC 
algorithm. The FA algorithm has the best solution for this 
function after GPC. Overall, out of the 30 test functions, the 
proposed GPC algorithm provides the best solutions for the 
27 functions. Also, it provides a jointly better solution for 
the two functions, and it does not provide the best solution 
for only one function in comparison with other algorithms.

If we want to calculate the computational complexity of 
the algorithm, both the time and space complexity must be 
considered. In the GPC algorithm, the main loop, which 
counts the number of iterations, includes an inner loop that 
calculates the new position for all individuals and examines 
the probability of substitution. Since finding the new posi-
tion of the worker and the stone block at the component level 
is done for each GPC vector, the fundamental operations are 
performed proportionally to the total number of loops. This 
is repeated until the end of the algorithm. On the other hand, 
to define the group of workers, we need O

(

n ×Maxit
)

 where 
n is the number of population and Maxit is the maximum iter-
ation of an algorithm. Therefore, if we assume that the algo-
rithm stops at Maxit and dim is the number of decision vari-
ables, then the GPC time complexity is O

(

n ×Maxit × dim
)

 . 
The space complexity of the GPC algorithm is the amount 
of space used during the initialization procedure that is 

Table 2   The values used to adjust the parameters of the algorithms

Algorithm Parameters Values

GA Population size 20
Crossover percentage 0.8
Mutation percentage 0.3
Mutation rate 0.02
Selection pressure 8

ICA Population size 20
Number of empires/imperialists 10
Selection pressure 1
Assimilation coefficient 1.5
Revolution probability 0.05
Revolution rate 0.1
Colonies mean cost coefficient 0.2

PSO Swarm size 20
Inertia weight 1
Inertia weight damping ratio 0.99
Personal learning coefficient 2
Global learning coefficient 2

DE Population size 20
Lower bound of scaling factor 0.2
Upper bound of scaling factor 0.8
Crossover probability 0.2

FA Swarm size 20
Light absorption coefficient 1
Attraction coefficient base value 2
Mutation coefficient 0.2
Mutation coefficient damping ratio 0.98

GPC Population size 20
Gravity 9.8
Angle of ramp 10
Initial velocity rand(0, 1)
Minimum friction 1
Maximum friction 10
Substitution probability 0.5



Evolutionary Intelligence	

1 3

considered at any one time. Thus the space complexity is 
O(it × dim) , where it is the number of iterations and dim is 
the number of decision variables as mentioned earlier.

One of the strengths of the GPC algorithm is that the 
available information of the population is fully utilized and 
used to intelligently orient the search and optimization pro-
cess. As a result, better solutions are obtained. The nature 
of the GPC algorithm is that the previous good information 
is retained, meaning that the algorithm has memory. This 
feature does not exist in the GA but similar to this feature 
seen in the PSO algorithm. In the GA when the popula-
tion changes, prior knowledge disappears but as mentioned 
earlier in GPC desirable information is retained. In the pro-
posed algorithm in each iteration, the population is com-
pared with the top member here, the Pharaoh’s special agent. 
In this way, the population actually share their information 
and knowledge. Similar to this feature is exists in the PSO 
algorithm. In addition to the good features of the GA and 

PSO algorithms, the high-speed feature is also inherited 
from the DE algorithm. DE is a fast and efficient algorithm 
that uses the direction and distance information of members 
to find solutions. This feature exists in the GPC algorithm. 
The convergence speed and speed of finding the global opti-
mum are very high since the entire population is changing 
their position, this means that each member hopes to find 
the optimal solution. Worker substitutions are a very use-
ful operation that increases the balance between explora-
tion and exploitation. In Fig. 7, examples of convergence 
related to some benchmark test functions are shown. In this 
algorithm, like other population-based algorithms, with an 
increasing population, we have the flexibility to deal with 
local minima. The proposed algorithm is also able to work 
with a very small population (at least 2). As shown in the 
table of results, the proposed algorithm also can deal with 
multimodal and nonlinear functions. The low number of 
parameters is a good feature of the algorithm that makes it 

Table 3   Mean and standard deviation of 50 independent runs in using benchmark functions

Fn NFE Algorithms

GA ICA PSO DE FA GPC

f1 103 11.3988 ± 1.4535 14.6126 ± 2.1301 7.6426 ± 0.4695 14.4831 ± 1.2437 17.3214 ± 0.7093 3.07e−06 ± 3.43e−06

f2 103 0.3091 ± 0.4750 0.0135 ± 0.0300 0.0774 ± 0.2344 3.03e−09 ± 9.21e−09 0.0001 ± 0.0002 8.81e−10 ± 1.77e−09

f3 103 1.1979 ± 2.7912 0.2044 ± 0.6552 0.1256 ± 0.1530 8.57e−09 ± 4.07e−09 0.1361 ± 0.1253 3.36e−15 ± 2.20e−14

f4 103 0.3190 ± 0.9152 0.2156 ± 0.9741 0.0002 ± 0.0002 1.35e−10 ± 3.46e−10 0.0002 ± 0.0003 9.63e−11 ± 2.16e−10

f5 103 2.4663 ± 6.4898 0.9443 ± 0.1509 0.8296 ± 0.4346 0.2579 ± 0.1520 0.9347 ± 0.3105 0.1000 ± 4.616e−05

f6 103 − 1.0258 ± 0.0131 − 1.0316 ± 4.485e−16 − 1.0315 ± 3.505e−05 − 1.0316 ± 4.485e−16 − 1.0315 ± 4.763e−05 − 1.0316 ± 4.485e−16

f7 103 0.0070 ± 0.0166 0.0005 ± 0.0030 1.99e−05 ± 3.11e−05 1.45e−12 ± 5.71e−12 3.16e−05 ± 3.04e−05 2.97e−20 ± 1.46e−19

f8 103 − 2.0623 ± 0.0004 − 2.0626 ± 1.794e−15 − 2.0625 ± 1.979e−05 − 2.0626 ± 1.794e−15 − 2.0625 ± 1.4142 − 2.0626 ± 1.794e−15

f9 103 12.6266 ± 11.3721 5.4428 ± 4.4744 5.1396 ± 4.0240 2.6012 ± 2.1694 2.7060 ± 1.6873 1.5526 ± 1.6249

f10 104 12.8940 ± 4.6453 8.6891 ± 5.1611 1.5832 ± 1.1931 30.9899 ± 40.2824 18.7399 ± 18.2317 0.6667 ± 0.0001

f11 103 − 0.8655 ± 0.0957 − 0.9289 ± 0.0570 − 0.9890 ± 0.0186 − 0.9714 ± 0.0266 − 0.9644 ± 0.0256 − 1.0000 ± 0.0000

f12 103 − 0.0428 ± 0.1292 − 0.9795 ± 0.0260 − 0.9857 ± 0.0259 − 0.9767 ± 0.0825 − 0.6120 ± 0.4841 − 0.9969 ± 0.0061

f13 103 − 705.91 ± 146.12 − 823.73 ± 122.03 − 774.35 ± 131.52 − 876.21 ± 55.486 − 917.69 ± 55.511 − 923.83 ± 47.916

f14 103 35.9352 ± 16.3258 36.2860 ± 16.9179 8.7594 ± 1.7283 58.1811 ± 15.9275 146.64 ± 22.8454 0.0647 ± 0.1498

f15 103 − 18.9269 ± 0.5256 − 19.2025 ± 0.0046 − 19.2040 ± 0.0047 − 18.7739 ± 0.9304 − 19.2072 ± 0.0014 − 19.2076 ± 0.0016

f16 104 48.3567 ± 25.6156 0.9214 ± 2.7513 0.0101 ± 0.0440 29.5942 ± 12.1996 92.5290 ± 17.5702 2.37e−18 ± 6.23e−18

f17 103 14.0730 ± 4.3324 34.8092 ± 10.6521 7.4679 ± 3.2174 33.4572 ± 9.4299 57.4547 ± 10.5266 2.7158 ± 0.2025

f18 103 0.0731 ± 0.1709 0.0074 ± 0.0268 0.0007 ± 0.0008 7.68e−10 ± 3.35e−09 0.0010 ± 0.0008 0.0023 ± 0.0155

f19 103 0.0222 ± 0.0591 0.0036 ± 0.0116 1.71e−05 ± 2.38e−05 8.55e−11 ± 3.67e−10 1.05e−05 ± 1.00e−05 5.69e−22 ± 1.87e−21

f20 103 − 13.6477 ± 0.9469 − 16.5118 ± 1.4582 − 11.4597 ± 0.8947 − 8.6621 ± 0.5310 − 9.4256 ± 0.6168 − 5.8100 ± 0.7490

f21 104 4.0745 ± 2.7031 3.4116 ± 3.1863 0.0442 ± 0.0311 32.6352 ± 74.4156 11.3340 ± 11.2445 4.77e−21 ± 1.12e−20

f22 104 10.8356 ± 3.9949 75.7122 ± 0.6142 51.7387 ± 18.5381 66.6841 ± 36.0603 77.6892 ± 21.6519 0.0000 ± 0.0000

f23 104 230.83 ± 158.11 170.91 ± 121.87 64.7732 ± 40.2686 105.97 ± 35.6370 240.14 ± 158.57 28.2754 ± 0.4155

f24 103 0.0528 ± 0.0572 0.0322 ± 0.0512 0.0006 ± 0.0020 0.0017 ± 0.0028 0.0014 ± 0.0031 0.0000 ± 0.0000

f25 103 0.5001 ± 4.677e−05 0.5001 ± 2.659e−05 0.5000 ± 1.28e−05 0.5000 ± 7.52e−06 0.5000 ± 4.31e−05 0.5000 ± 1.41e−06

f26 103 − 128.51 ± 47.8553 − 180.39 ± 19.1340 − 186.10 ± 1.2985 − 180.39 ± 6.7993 − 185.21 ± 2.7258 − 186.71 ± 0.0246

f27 103 12.0705 ± 5.3422 10.1236 ± 4.0827 2.2410 ± 0.4308 18.3657 ± 5.2573 43.3034 ± 7.1993 2.50e−13 ± 6.25e−13

f28 103 0.0007 ± 0.0015 0.0012 ± 0.0019 9.05e−06 ± 9.21e−06 0.0037 ± 0.0039 0.0244 ± 0.0200 1.12e−23 ± 6.99e−23

f29 104 0.9914 ± 0.4659 0.0320 ± 0.0972 0.0003 ± 0.0012 15.1790 ± 21.7896 2.2247 ± 0.4904 6.93e−20 ± 1.70e−19

f30 104 166.96 ± 64.5063 82.4793 ± 27.1642 10.0492 ± 4.4244 131.70 ± 61.5525 115.60 ± 28.1611 2.16e−19 ± 8.03e−19



	 Evolutionary Intelligence

1 3

easy to implement. Unlike the PSO, the GPC does not have 
premature convergence. Figure 8 shows perspective view of 
the population in consequent iterations for some benchmark 
functions as an example.

Some of the advantages of the GPC algorithm are 
described below. The GPC algorithm tries to find the mini-
mum solutions of the fitness function in the set of real num-
bers. In this algorithm, the population is real vectors. This 
feature is also present in the DE algorithm. The advantage 
is that if the objective of optimization with such a fitness 
function can be formulated, then the use of GPC will be very 
efficient. It is also better to use GPC in problems that can be 
solved with evolutionary-based algorithms, because to get 
acceptable results from evolutionary-based algorithms such 
as GA, assuming there is no adaptive version, we need to set 
or tune the parameters correctly, which is time-consuming. 
In the GPC algorithm, there is the ability to find the global 
minimum without even considering the initial values for 
some parameters. It’s also very fast and yet simple, so it’s 
easy for implementation. One of the interesting features of 
this algorithm is the ability to change from multiplicative to 
the accumulative mode in finding the position of workers, 
which for some problems leads to more appropriate solu-
tions. With this option, the density of the solutions within 
the solution space may be much higher than those gener-
ated via other metaheuristics. In other words, the solutions 
can be much closer to each other. This algorithm does not 
require special control parameters and works well without 
special control over the parameters. Finally, the substitution 

probability rate can be controlled. This algorithm has the 
ability to easily convert from continuous mode to the inte-
ger or discrete binary form. There is also the ability to find 
optimal solutions to a non-linear constrained optimization 
problem with penalty functions. In addition, due to the 
fact that all members of the population can try to be the 
best, there is no problem in getting stuck in the local trap. 
Another advantage of the algorithm is that if the population 
increases, the run time will increase linearly. This is while 
in algorithms such as FA, if the population increases, the run 
time increases exponentially.

If we want to point out the disadvantages of GPC, it can 
be said that for some combinatorial problems such as the 
Traveling Salesman Problem (TSP) may not be appropri-
ate to use unless it is developed. It is better to solve these 
problems with specific path determination algorithms such 
as ACO.

5 � Statistical analysis

Statistical analysis is the use of statistical data to determine 
the relationships and probabilities between data quantita-
tively. This means that the statistical analysis process gen-
erates and analyzes statistical data to discover the meaning 
of the data. The main purpose of statistical analysis is to 
identify trends.

In this paper, Friedman and Iman-Davenport tests were 
used to find significant differences between the results of the 

Fig. 7   Comparison of convergence curves of GPC and literature algorithms obtained in some of the benchmark functions



Evolutionary Intelligence	

1 3

Fig. 8   The perspective view in 1st, 5th, and 10th iteration from left to right, respectively. a The drop-wave function. b The holder-table function. 
c The Levy function

Table 4   Ranking of the 
algorithms

Algorithms

GA ICA PSO DE FA GPC

Ranking 5.05 4.17 2.80 3.50 4.27 1.22

Table 5   Results of Friedman’s and Iman–Davenport’s tests

Test method Chi square Degrees of 
freedom 
(DF)

p value Hypothesis

Friedman 80.0827 5 8.063e−16 Rejected
Iman–Davenport 31.6940 5 2.200e−16 Rejected

Table 6   Results of the Holm’s method based on the mean of 50 inde-
pendent runs (GPC is the control algorithm)

Algorithm j α/j z-score p value Hypothesis

PSO 1 0.0500 3.2709 0.001072 Rejected
DE 2 0.0250 4.7200 < 0.00001 Rejected
ICA 3 0.0166 6.1070 < 0.00001 Rejected
FA 4 0.0125 6.3140 < 0.00001 Rejected
GA 5 0.01 7.9288 < 0.00001 Rejected



	 Evolutionary Intelligence

1 3

GPC algorithm and other algorithms. Table 4 shows Fried-
man’s rankings based on the results of Table 3. As the table 
shows, the best rank is related to the GPC algorithm and 
then PSO, DE, ICA, FA, and GA are located, respectively. 
Table 5 shows the results of the Friedman and Iman-Dav-
enport tests. As Table 5 shows, the hypothesis is rejected 
according to the results. So we conclude that there is a sig-
nificant difference in the performance of the algorithms.

Because of the significant difference observed, we use the 
Holm method as a post hoc test for better analysis. This test 
compares the best rank obtained from Friedman rankings 
with the results of other algorithms. Given that the best rank 
is related to the GPC algorithm, this algorithm is consid-
ered as the control algorithm. Also the confidence interval is 
95% (α = 0.05). The results of the Holm method are outlined 

in Table 6. The results show that the GPC algorithm has a 
significant difference in comparison with other algorithms.

6 � High‑dimensional tests

Over the past decade, high-dimensional problems have 
received much attention from researchers, and various pop-
ulation-based algorithms have been used to solve these prob-
lems. The advances of various sciences and the advances of 
technology because of the high-dimensionality and larger 
search space, it has made high-dimensional optimization a 
major requirement.

One of the things that makes optimization problems dif-
ficult is to scale up the search space. Many metaheuristic 

Table 7   The results of applying (mean and standard deviation) the GPC, PSO and DE algorithms on test functions for 5000 and 10,000 dimen-
sions

Fn NFE Algorithms

PSO DE GPC

dim = 5000 dim = 10,000 dim = 5000 dim = 10,000 dim = 5000 dim = 10,000

f1 103 17.4625 ± 0.4382 17.5663 ± 0.3181 21.2406 ± 0.0068 21.2453 ± 0.0056 0.0002 ± 0.0001 0.0002 ± 9.83e−05
f2 103 0.1524 ± 0.3213 0.1571 ± 0.3312 0.0258 ± 0.0206 0.0266 ± 0.0343 0.0215 ± 0.0228 0.0210 ± 0.0233
f3 103 0.1533 ± 0.1833 0.1934 ± 0.1997 0.5515 ± 0.2689 0.6216 ± 0.3458 0.0000 ± 0.0000 0.0000 ± 0.0000
f4 103 0.5543 ± 0.6417 0.1180 ± 0.3034 0.3446 ± 0.2294 0.2900 ± 0.3844 0.0005 ± 0.0004 0.0002 ± 0.0003
f5 103 1.1992 ± 0.7266 0.9579 ± 0.5248 1.9607 ± 1.1478 2.2840 ± 1.3836 0.1000 ± 2.21e−05 0.1800 ± 0.2531
f6 103 − 1.0315 ± 9.6e−05 − 1.0315 ± 0.0001 − 1.0298 ± 0.0011 − 1.0286 ± 0.0033 − 1.0316 ± 2.34e−16 − 1.0316 ± 2.34e−16
f7 103 1.34e−05 ± 1.7e−05 4.08e−05 ± 4.6e−05 0.0013 ± 0.0019 0.0028 ± 0.0062 3.15e−21 ± 9.25e−21 2.81e−19 ± 8.76e−19
f8 103 − 2.0625 ± 3.1e−05 − 2.0626 ± 0.0000 − 2.0624 ± 0.0001 − 2.0624 ± 0.0002 − 2.0624 ± 0.0001 − 2.0625 ± 0.0001
f9 103 7.4621 ± 3.6801 5.1256 ± 3.7951 2.2932 ± 1.9248 2.8160 ± 2.4803 0.9780 ± 0.0632 2.1851 ± 1.7851
f10 104 Infeasible Infeasible Infeasible Infeasible 0.9998 ± 0.0005 0.9096 ± 0.2844
f11 103 − 0.9695 ± 0.0298 − 0.9677 ± 0.0299 − 0.9301 ± 0.0113 − 0.9386 ± 0.0214 − 1.0000 ± 0.0000 − 1.0000 ± 0.0000
f12 103 − 0.9887 ± 0.0123 − 0.9797 ± 0.0360 Infeasible Infeasible − 0.9894 ± 0.0144 − 0.9887 ± 0.0140
f13 103 Infeasible Infeasible − 905.85 ± 30.481 − 903.60 ± 50.648 − 932.03 ± 33.306 − 911.32 ± 59.638
f14 103 Infeasible Infeasible Infeasible Infeasible 159.34 ± 160.23 302.43 ± 231.76
f15 103 − 18.3868 ± 2.5713 − 18.7544 ± 0.4270 − 18.8650 ± 0.3702 − 19.0553 ± 0.3666 − 19.1772 ± 0.0273 − 19.2031 ± 0.0080
f16 104 Infeasible Infeasible Infeasible Infeasible 6.87e−12 ± 2.62e−12 4.99e−10 ± 4.25e−10
f17 103 12,104 ± 1240 24,421 ± 2681 62,575 ± 671 126,570 ± 708 454.48 ± 0.040 908.72 ± 0.089
f18 103 0.0005 ± 0.0007 0.0019 ± 0.0018 0.6235 ± 0.5093 0.5282 ± 0.4862 0.0113 ± 0.0092 0.0344 ± 0.0326
f19 103 1.05e−05 ± 1.5e−05 1.10e−05 ± 1.4e−05 0.0365 ± 0.0770 0.0295 ± 0.0343 8.31e−21 ± 2.62e−20 3.93e−20 ± 1.22e−19
f20 103 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
f21 104 Infeasible Infeasible Infeasible Infeasible 4.31e−16 ± 4.14e−16 2.13e−15 ± 1.57e−15
f22 104 49,407 ± 998 103,949 ± 1711 Infeasible Infeasible 0.0000 ± 0.0000 0.0000 ± 0.0000
f23 104 Infeasible Infeasible Infeasible Infeasible 499.878 ± 0.329 999.879 ± 0.325
f24 103 0.0005 ± 0.0010 0.0004 ± 0.0005 0.0435 ± 0.0363 0.0965 ± 0.0557 0.0000 ± 0.0000 0.0000 ± 0.0000
f25 103 0.5001 ± 1.5e−05 0.5001 ± 4.5e−05 0.5001 ± 7.8e−06 0.5001 ± 1.5e−05 0.5000 ± 6.9e−06 0.5000 ± 1.2e−05
f26 103 − 155.04 ± 30.968 − 157.40 ± 32.344 − 157.17 ± 19.980 − 168.52 ± 21.645 − 183.52 ± 6.5020 − 186.27 ± 0.9449
f27 103 7277.5 ± 829 14,849.9 ± 1228 42,690.2 ± 302 86,051.3 ± 258 1.20e−07 ± 1.17e−07 1.29e−07 ± 1.03e−07
f28 103 1.1608 ± 1.9391 5.3391 ± 0.8236 4.0833 ± 0.8357 4.8182 ± 0.6840 3.22e−23 ± 1.00e−22 1.01e−25 ± 1.90e−25
f29 104 Infeasible Infeasible Infeasible Infeasible 5.01e−13 ± 4.58e−13 3.10e−12 ± 4.02e−12
f30 104 Infeasible Infeasible Infeasible Infeasible 2.52e−07 ± 4.83e−07 8.70e−05 ± 0.0002



Evolutionary Intelligence	

1 3

algorithms are not capable of solving high-dimensional 
problems. Important factors that influence problem-solving 
with increasing dimensions are as follows. If the size of the 
problem increases, the search space will increase exponen-
tially. Problem specifications may change with increasing 
dimensionality, such as Rosenbrock function that is uni-
modal in two-dimensions and multimodal in more than two-
dimensions. Also, evaluating high-dimensional problems is 
costly. Besides, the interaction between variables is influ-
ential. If the variables are independent and the dimensions 
are increased, we can solve the problem by optimizing each 
of the variables. But if variables interact, they all have to be 
optimized together, as a result, optimization becomes dif-
ficult with increasing dimensions.

In this section, experiments are performed to evaluate the 
performance of the proposed algorithm in high dimensions. 
The difference between the experiments in this section and 
Sect. 4 is in the number of dimensions and number of inde-
pendent runs. Here, there are 5000 and 10,000 dimensions. 
Hence, the mean and standard deviation of 10 independent 
runs are considered. Also according to Table 4, the proposed 

GPC algorithm (best ranked), second-best algorithm and 
third-best algorithm are used for comparison. Therefore, 
according to the table, the PSO and DE algorithms are 
selected for comparison. Table 7 shows the results of the 
execution of the algorithms on the above-mentioned dimen-
sions. Here we point out that some of the solutions obtained 
from some algorithms are not within the acceptable domain. 
Therefore, such solutions are specified in the table as “infea-
sible”. This means that the algorithm is not able to provide 
a proper solution.

As the table shows, the GPC algorithm works well at high 
dimensions. All the solutions are acceptable and only for 
the Michalewicz 

(

f20
)

 solutions are not desirable. While the 
PSO algorithm is unacceptable in 9 functions out of 30 func-
tions. The DE algorithm also fails to perform well in 10 of 
the 30 benchmark test functions. If we compare the feasible 
solutions, the solutions provided by the GPC algorithm are 
much better than the solutions provided by the PSO and DE. 
This shows that the proposed algorithm is highly capable of 
solving high-dimensional problems.

Table 8   The image segmentation fitness function results (Mean and Standard Deviation)

Image K value Algorithms

GA ICA PSO DE FA GPC

Airplane K = 3 347,788 ± 25,095 318,821 ± 736 322,467 ± 13,328 318,613 ± 957 318,965 ± 658 318,080 ± 634
K = 4 332,227 ± 41,228 277,192 ± 13,600 274,510 ± 8210 270,625 ± 7 271,031 ± 133 270,617 ± 26
K = 5 295,512 ± 32,007 250,186 ± 9100 246,039 ± 9033 245,117 ± 6232 244,193 ± 2232 241,317 ± 499

Baboon K = 3 978,216 ± 82,200 888,057 ± 16 888,061 ± 14 888,047 ± 18 888,114 ± 34 888,033 ± 2
K = 4 818,485 ± 58,452 724,440 ± 33 724,433 ± 31 735,501 ± 33,705 724,589 ± 59 724,431 ± 6
K = 5 732,511 ± 36,383 653,162 ± 14,549 652,887 ± 14,607 644,639 ± 8881 645,043 ± 8875 642,019 ± 2990

Barbara K = 3 552,524 ± 42,053 504,978 ± 18,815 504,977 ± 18,816 504,978 ± 18,816 496,985 ± 9008 494,028 ± 4
K = 4 486,828 ± 20,584 430,109 ± 18,949 426,118 ± 16,255 454,405 ± 95,453 426,469 ± 11,701 429,043 ± 13,076
K = 5 457,827 ± 23,446 392,425 ± 30,105 375,559 ± 9482 371,760 ± 7152 374,901 ± 12,865 381,185 ± 25,185

Boats K = 3 349,756 ± 38,266 317,820 ± 19,490 310,271 ± 15,913 310,271 ± 15,913 302,827 ± 41 302,730 ± 8
K = 4 317,856 ± 26,618 268,258 ± 1434 269,198 ± 2164 267,849 ± 129 271,964 ± 10,944 267,777 ± 385
K = 5 284,298 ± 17,082 239,904 ± 3700 240,182 ± 4073 241,428 ± 9085 239,876 ± 5723 239,765 ± 1878

Butterfly K = 3 693,739 ± 59,446 600,451 ± 316 600,450 ± 316 600,400 ± 158 600,397 ± 18 600,351 ± 0.8934
K = 4 599,738 ± 62,673 518,572 ± 13,067 510,974 ± 8004 510,976 ± 8003 511,076 ± 8017 508,475 ± 32
K = 5 514,745 ± 24,349 453,833 ± 12,932 450,466 ± 11,307 446,772 ± 10,371 451,457 ± 12,302 441,812 ± 206

House K = 3 546,494 ± 88,219 418,319 ± 76,105 418,319 ± 76,105 400,269 ± 57,079 382,424 ± 88 382,224 ± 3
K = 4 468,701 ± 72,685 336,142 ± 29,247 319,151 ± 27,357 313,499 ± 23,905 302,746 ± 206 303,013 ± 1032
K = 5 416,966 ± 91,710 280,873 ± 7611 277,556 ± 1793 285,708 ± 25,697 280,005 ± 5105 286,374 ± 7481

Lena K = 3 563,491 ± 20,432 541,279 ± 15,811 536,379 ± 316 536,281 ± 7 536,410 ± 187 536,281 ± 0.8819
K = 4 521,361 ± 28,630 473,778 ± 5900 473,183 ± 5115 473,391 ± 5393 470,314 ± 2943 469,391 ± 411
K = 5 464,393 ± 24,779 421,960 ± 8919 417,333 ± 1247 417,160 ± 1334 419,372 ± 4381 416,199 ± 811

Peppers K = 3 868,225 ± 63,115 762,720 ± 632 762,820 ± 674 763,020 ± 1581 762,622 ± 33 762,524 ± 1
K = 4 770,053 ± 59,433 655,089 ± 749 654,830 ± 316 655,433 ± 918 655,146 ± 552 654,789 ± 17
K = 5 701,150 ± 54,943 584,794 ± 21,497 576,263 ± 25,590 573,168 ± 12,238 576,473 ± 16,349 569,241 ± 3156



	 Evolutionary Intelligence

1 3

7 � Application in image segmentation

Digital images comprise a large part of scientific studies. In 
the meantime, image segmentation is one of the activities 
that is done on digital images. Image segmentation is the 
process of dividing an image into homogeneous areas [59]. 
The homogeneous area contains the desired object or part of 
the object. Homogeneous areas can be determined and meas-
ured using some image features such as pixel intensity, color, 
texture, shape, size and so on [60]. The segmentation is done 
so that each of the pixels in the specified region has similar 
properties but in comparison with the adjacent pixels in the 
adjacent region have different properties. Segmentation can 
be seen as a key step in preparing the image for applications 
such as machine vision, and image analysis including medi-
cal images, satellite images, and so on.

There are generally four ways of image segmentation. 
These methods are threshold-histogram-based methods, 
texture-based methods, split-merge-based methods, and 
clustering-based methods [61]. Given that in image segmen-
tation, the image is divided into segments where each seg-
ment contains a color spectrum or part of a color spectrum, 
so segmentation can be considered as a clustering problem. 
Clustering is an unsupervised machine learning technique 

in which the cluster members should be most similar to each 
other and also most distinct from the other clusters.

Many clustering algorithms are widely used to solve image 
segmentation problems. One of the algorithms used in seg-
mentation is the k-means algorithm [62]. The k-means needs 
to determine the centroids of the clusters, so by determining 
the centroids and checking the distance of the elements from 
the centroids, the cluster is specified. The k-means is sim-
ple but has a major drawback [63]. Determining the optimal 
centroid is an NP-hard optimization problem which is quite 
effective in the quality of the final solutions. In k-means, the 
initial centroids are randomly selected, while the optimal cen-
troids can be determined by specific approaches. One of these 
approaches is to use optimization algorithms. The process of 
optimal centroid search can be considered as an optimiza-
tion problem. In image segmentation, optimizing the time 
consumed by the CPU is also important. We know that the 
image segmentation can be considered as a high-dimensional 
problem. Using fast and accurate metaheuristic algorithms 
can be an effective approach. Therefore in this paper, as an 
application, the proposed GPC optimization algorithm is 
employed for image clustering.

The procedure and details of this experiment are as 
follows: the algorithms selected for the experiment were 

Table 9   The CPU consumption 
time of image segmentation (in 
second)

Image K value Algorithms

GA ICA PSO DE FA GPC

Airplane K = 3 18.615 19.131 18.592 18.220 18.386 18.443
K = 4 21.366 21.595 21.813 21.462 21.386 21.164
K = 5 24.375 24.436 24.456 24.411 24.891 24.364

Baboon K = 3 18.427 18.208 18.258 18.637 19.107 18.203
K = 4 21.419 21.776 21.507 21.487 21.866 21.794
K = 5 24.265 24.335 24.324 23.968 24.008 23.683

Barbara K = 3 18.778 18.920 18.755 18.689 19.057 18.520
K = 4 21.578 21.872 21.686 21.652 21.855 21.117
K = 5 24.679 24.539 24.485 24.571 24.751 24.164

Boats K = 3 18.676 19.084 19.571 20.009 20.313 18.364
K = 4 21.615 22.092 22.662 24.658 22.907 21.596
K = 5 25.240 25.035 26.572 26.288 26.466 24.512

Butterfly K = 3 18.265 19.034 18.274 19.398 19.242 18.441
K = 4 21.504 21.602 21.412 21.640 21.468 21.229
K = 5 24.439 24.268 24.210 25.517 24.679 24.076

House K = 3 18.664 18.859 18.868 18.919 18.356 18.257
K = 4 21.703 21.145 21.767 21.175 21.452 21.006
K = 5 24.587 24.232 26.658 24.466 24.615 24.155

Lena K = 3 18.490 19.642 21.365 19.706 19.290 18.332
K = 4 21.686 22.039 22.509 21.571 21.484 21.417
K = 5 24.736 25.833 25.367 23.437 24.554 24.593

Peppers K = 3 19.289 21.289 19.649 19.415 19.958 18.308
K = 4 22.032 23.486 23.517 22.746 22.756 21.779
K = 5 24.631 24.555 27.499 25.262 25.353 24.190



Evolutionary Intelligence	

1 3

Fig. 9   Results of applying the GPC algorithm to images



	 Evolutionary Intelligence

1 3

applied to eight 256 × 256 color images. For this purpose, 
a fitness function is used that measures the within-cluster 
distances. So, as a fitness function, we have,

where d is the Euclidean distance, c is the cluster, i specifies 
the cluster number, x is a member of the cluster, and m is the 
centroid of the cluster. The purpose is to minimize the above 
fitness function. If it is minimized, it means that the most 
optimal centroids are selected. The algorithms are applied 
to the fitness function and the mean and standard devia-
tion of 10 independent runs are recorded. Also, the average 
CPU consumption is recorded as an evaluation criterion. The 
stop condition is 5000 NFE calls for all algorithms. We also 
performed experiments for K equal to 3, 4, and 5. Table 8 
shows the fitness function results for all eight images. Also, 
Table 9 shows the CPU consumption time for all algorithm. 
Furthermore, Fig. 9 shows the results of applying the GPC 
algorithm to images.

Table 8 shows that the proposed algorithm works well 
for the image segmentation problem, which is a high-
dimensional problem. As can be seen, the lowest value of 
the fitness function in most experiments on different images 
is provided by the GPC algorithm. Also, in terms of CPU 
consumption, which can be considered as an evaluation 
criterion, the proposed algorithm consumed the least time 
among the other algorithms. This shows that the proposed 
algorithm is fast and efficient.

8 � Conclusions

In this paper, a new metaheuristic algorithm based on the 
construction method of Giza Pyramids in the ancient past 
called Giza Pyramids Construction (GPC) was proposed. 
The proposed algorithm is a population-based algorithm that 
is controlled by the movements of the workers and pushing 
the stone blocks on the ramp. This algorithm can be used as 
a fundamental optimization method in many areas of knowl-
edge including engineering sciences. Experiments have 
shown that the proposed algorithm is capable of dealing with 
high-dimensional problems. Evaluations also have shown 
that the proposed algorithm works well for use in image 
processing and segmentation. In this paper, in addition to 
presenting a new algorithm, a new source of inspiration is 
introduced. The limitations and the lack of complexity in the 
ancient past have led to many optimal methods. Inspired by 
ancient past methods, we can be reached to new approaches 
for solving various optimization problems.

As future work to expand this source of inspiration, stud-
ies on the technologies of construction of other ancient 

(10)within cluster distance =
∑

i

∑

x∈ci

d
(

x,mi

)

civilizations can be made. Other applications of the pro-
posed algorithm can also be explored in a variety of issues 
such as engineering problems.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

References

	 1.	 Rao SS (2019) Engineering optimization: theory and practice. 
Wiley, Hoboken

	 2.	 Hussain K, Salleh MNM, Cheng S, Shi Y (2019) Metaheuris-
tic research: a comprehensive survey. Artif Intell Rev 
52(4):2191–2233

	 3.	 Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) 
Metaheuristic algorithms: a comprehensive review. In: Sangaiah 
AK, Sheng M, Zhang Z (eds) Computational intelligence for 
multimedia big data on the cloud with engineering applications. 
Academic Press, Cambridge, pp 185–231

	 4.	 Karkalos NE, Markopoulos AP, Davim JP (2019) Evolutionary-
based methods. In: Karkalos NE, Markopoulos AP, Davim JP 
(eds) Computational methods for application in industry 4.0. 
Springer, Cham, pp 11–31

	 5.	 Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73
	 6.	 Neri F, Cotta C, Moscato P (2011) Handbook of memetic algo-

rithms, vol 379. Springer, Berlin
	 7.	 Das S, Suganthan PN (2010) Differential evolution: a survey of 

the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31
	 8.	 Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-

mization algorithm: harmony search. Simulation 76(2):60–68
	 9.	 De Castro LN, Von Zuben FJ (2000) The clonal selection algo-

rithm with engineering applications. In: Proceedings of GECCO, 
vol 2000, pp 36–39

	10.	 Glover F, Laguna M (1998) Tabu search. In: Du DZ, Pardalos PM 
(eds) Handbook of combinatorial optimization. Springer, Boston, 
pp 2093–2229

	11.	 Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by 
simulated annealing. Science 220(4598):671–680

	12.	 Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. 
In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. 
International Series in Operations Research & Management Sci-
ence, vol 57. Springer, Boston, pp 320–353

	13.	 Voudouris C, Tsang EP, Alsheddy A (2010) Guided local search. 
In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. 
International Series in Operations Research & Management Sci-
ence, vol 146. Springer, Boston, pp 321–361

	14.	 Feo TA, Resende MG (1995) Greedy randomized adaptive search 
procedures. J Glob Optim 6(2):109–133

	15.	 Hansen P, Mladenović N (2001) Variable neighborhood search: 
principles and applications. Eur J Oper Res 130(3):449–467

	16.	 Dhal KG, Ray S, Das A, Das S (2019) A survey on nature-inspired 
optimization algorithms and their application in image enhance-
ment domain. Arch Comput Methods Eng 26(5):1607–1638

	17.	 Kennedy J, Eberhart R (1995) Particle swarm optimization. In: 
Proceedings of ICNN’95-international conference on neural net-
works, vol 4. IEEE, pp 1942–1948

	18.	 Yang XS (2009) Firefly algorithms for multimodal optimization. 
In: International symposium on stochastic algorithms. Springer, 
Berlin, pp 169–178



Evolutionary Intelligence	

1 3

	19.	 Karaboga D, Basturk B (2007) A powerful and efficient algorithm 
for numerical function optimization: artificial bee colony (ABC) 
algorithm. J Glob Optim 39(3):459–471

	20.	 Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. 
IEEE Comput Intell Mag 1(4):28–39

	21.	 Harifi S, Khalilian M, Mohammadzadeh J, Ebrahimnejad S (2019) 
Emperor Penguins Colony: a new metaheuristic algorithm for 
optimization. Evol Intell 12(2):211–226

	22.	 Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired 
optimization algorithm. Commun Nonlinear Sci Numer Simul 
17(12):4831–4845

	23.	 Askarzadeh A (2016) A novel metaheuristic method for solv-
ing constrained engineering optimization problems: crow search 
algorithm. Comput Struct 169:1–12

	24.	 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. 
Adv Eng Softw 69:46–61

	25.	 Jain M, Maurya S, Rani A, Singh V (2018) Owl search algo-
rithm: a novel nature-inspired heuristic paradigm for global 
optimization. J Intell Fuzzy Syst 34(3):1573–1582

	26.	 Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Abd Elaziz 
M (2020) Ant lion optimizer: a comprehensive survey of its 
variants and applications. Arch Comput Methods Eng. https​://
doi.org/10.1007/s1183​1-020-09420​-6

	27.	 Lam AY, Li VO (2009) Chemical-reaction-inspired metaheuris-
tic for optimization. IEEE Trans Evol Comput 14(3):381–399

	28.	 Hatamlou A (2013) Black hole: a new heuristic optimization 
approach for data clustering. Inf Sci 222:175–184

	29.	 Abualigah L (2020) Multi-verse optimizer algorithm: a compre-
hensive survey of its results, variants, and applications. Neural 
Comput Appl. https​://doi.org/10.1007/s0052​1-020-04839​-1

	30.	 Kaveh A, Dadras A (2017) A novel meta-heuristic optimization algo-
rithm: thermal exchange optimization. Adv Eng Softw 110:69–84

	31.	 Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive 
algorithm: an algorithm for optimization inspired by imperialis-
tic competition. In IEEE congress on evolutionary computation. 
IEEE, pp 4661–4667

	32.	 Reynolds RG (1994) An introduction to cultural algorithms. In: 
Proceedings of the third annual conference on evolutionary pro-
gramming. World Scientific, River Edge, pp 131–139

	33.	 Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-
based optimization: a novel method for constrained mechanical 
design optimization problems. Comput Aided Des 43(3):303–315

	34.	 Askari Q, Younas I, Saeed M (2020) Political optimizer: a novel 
socio-inspired meta-heuristic for global optimization. Knowl 
Based Syst 195:105709

	35.	 Mehrabian AR, Lucas C (2006) A novel numerical optimization algo-
rithm inspired from weed colonization. Ecol Inform 1(4):355–366

	36.	 Ma L, Zhu Y, Liu Y, Tian L, Chen H (2015) A novel bionic algo-
rithm inspired by plant root foraging behaviors. Appl Soft Comput 
37:95–113

	37.	 Rezaei N, Ebrahimnejad S, Moosavi A, Nikfarjam A (2019) A 
green vehicle routing problem with time windows considering the 
heterogeneous fleet of vehicles: two metaheuristic algorithms. Eur 
J Ind Eng 13(4):507–535

	38.	 Bekdaş G, Nigdeli SM, Kayabekir AE, Yang XS (2019) Optimiza-
tion in civil engineering and metaheuristic algorithms: a review 
of state-of-the-art developments. In: Computational intelligence, 
optimization and inverse problems with applications in engineer-
ing. Springer, Cham, pp 111–137

	39.	 Harifi S, Khalilian M, Mohammadzadeh J, Ebrahimnejad S 
(2020) Optimizing a neuro-fuzzy system based on nature inspired 
emperor penguins colony optimization algorithm. IEEE Trans 
Fuzzy Syst 28(6):1110–1124

	40.	 Ghosh M, Guha R, Singh PK, Bhateja V, Sarkar R (2019) A histo-
gram based fuzzy ensemble technique for feature selection. Evol 
Intell 12(4):713–724

	41.	 Abualigah LM, Khader AT, Hanandeh ES (2018) A new feature 
selection method to improve the document clustering using par-
ticle swarm optimization algorithm. J Comput Sci 25:456–466

	42.	 Abualigah LMQ, Hanandeh ES (2015) Applying genetic algo-
rithms to information retrieval using vector space model. Int J 
Comput Sci Eng Appl 5(1):19

	43.	 Finley MI (1985) Ancient history, evidence and models. Chatto 
& Windus, London

	44.	 Momigliano A (1950) Ancient history and the antiquarian. J 
Warbg Court Inst 13(3/4):285–315

	45.	 Spaulding AC (2017) Explanation in archeology. In: Binford L 
(ed) Archeology in cultural systems. Routledge, Abingdon, pp 
33–39

	46.	 Gates C (2011) Ancient cities: the archaeology of urban life in the 
ancient Near East and Egypt, Greece and Rome. Taylor & Francis, 
Abingdon

	47.	 Laurence R (2004) The uneasy dialogue between ancient history 
and archaeology. In: Sauer E (ed) Archaeology and ancient his-
tory. Routledge, Abingdon, pp 111–125

	48.	 Verboven K (2014) Attitudes to work and workers in classical 
Greece and Greece and Rome. Tijdschrift voor Economische en 
Sociale Geschiedenis 11:67–87

	49.	 Noorbergen R (2001) Secrets of the lost races: new discoveries 
of advanced technology in ancient civilizations. TEACH Services 
Inc., Fort Oglethorpe

	50.	 Flohr M (2015) Innovation and society in the Roman World. 
Oxford Handbooks Online

	51.	 Verner M (2007) The pyramids: the mystery, culture, and science 
of Egypt’s great monuments. Open Road+Grove/Atlantic

	52.	 Magli G (2009) Akhet Khufu: archaeo-astronomical hints at a 
common project of the two main pyramids of Giza, Egypt. Nexus 
Netw J 11(1):35–50

	53.	 Morishima K, Kuno M, Nishio A, Kitagawa N, Manabe Y, Moto 
M et al (2017) Discovery of a big void in Khufu’s Pyramid by 
observation of cosmic-ray muons. Nature 552(7685):386–390

	54.	 Lehner M (1997) The complete pyramids. Thames & Hudson, 
London

	55.	 Smith CB (1999) Program management BC. Civ Eng 69(6):34
	56.	 Smith CB (2018) How the great pyramid was built. Smithsonian 

Institution, Washington, DC
	57.	 Rigby JK (2016) Building the great pyramid at Giza: investigating 

ramp models
	58.	 Surjanovic S, Bingham D (2013) Virtual library of simulation 

experiments: test functions and datasets. Retrieved March 4, 2020, 
from http://www.sfu.ca/~ssurj​ano

	59.	 He L, Huang S (2017) Modified firefly algorithm based multi-
level thresholding for color image segmentation. Neurocomputing 
240:152–174

	60.	 Pare S, Kumar A, Bajaj V, Singh GK (2016) A multilevel color 
image segmentation technique based on cuckoo search algorithm 
and energy curve. Appl Soft Comput 47:76–102

	61.	 Jia H, Lang C, Oliva D, Song W, Peng X (2019) Hybrid grasshop-
per optimization algorithm and differential evolution for multi-
level satellite image segmentation. Remote Sens 11(9):1134

	62.	 Kapoor S, Zeya I, Singhal C, Nanda SJ (2017) A grey wolf opti-
mizer based automatic clustering algorithm for satellite image 
segmentation. Procedia Comput Sci 115:415–422

	63.	 Hrosik RC, Tuba E, Dolicanin E, Jovanovic R, Tuba M (2019) 
Brain image segmentation based on firefly algorithm combined 
with k-means clustering. Stud Inform Control 28:167–176

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s11831-020-09420-6
https://doi.org/10.1007/s11831-020-09420-6
https://doi.org/10.1007/s00521-020-04839-1
http://www.sfu.ca/%7essurjano

	Giza Pyramids Construction: an ancient-inspired metaheuristic algorithm for optimization
	Abstract
	1 Introduction
	2 Ancient-inspired ideology
	3 Giza Pyramids Construction (GPC) algorithm
	3.1 The construction
	3.2 The inspiration
	3.3 The proposed algorithm

	4 Experimental results and discussion
	5 Statistical analysis
	6 High-dimensional tests
	7 Application in image segmentation
	8 Conclusions
	References




