
Comparative Study of Apache Spark MLlib
Clustering Algorithms

Sasan Harifi(✉), Ebrahim Byagowi, and Madjid Khalilian

Department of Computer Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
{s.harifi,ebrahim.byagowi,khalilian}@kiau.ac.ir

Abstract. Clustering of big data has received much attention recently. Analytics
algorithms on big datasets require tremendous computational capabilities.
Apache Spark is a popular open- source platform for large-scale data processing
that is well-suited for iterative machine learning tasks. This paper presents an
overview of Apache Spark Machine Learning Library (Spark.MLlib) algorithms.
The clustering methods consist of Gaussian Mixture Model (GMM), Power-Iter‐
ation Clustering method, Latent Dirichlet Allocation (LDA), and k-means are
completely described. In this paper, three benchmark datasets include Forest
Cover Type, KDD Cup 99 and Internet Advertisements used for experiments. The
same algorithms that can be compared with each other, compared. For a better
understanding of the results of the experiments, the algorithms are described with
suitable tables and graphs.

Keywords: Clustering · k-means · Bisecting k-means · Spark MLlib · Big data ·
KDD cup 99 · Cover type · Train time · Cohesion

1 Introduction

Clustering is an unsupervised learning method which tries to find some distributions and
patterns in unlabeled datasets. Usually, those points in the same cluster should have
more similarity than other points in other clusters [1].

Considered that clustering pursues the arrangement of a family of items into homo‐
geneous groups, taking into account inherent quantitative and qualitative information
about them. However, the practical implementation of some clustering techniques
requires certain mathematical assumptions that sometimes are difficult, if not impos‐
sible, to be checked. Some of these assumptions are quite often simply hidden in the
interpreter’s mind [2].

Also clustering items according to some notion of similarity is a major primitive in
machine learning. Correlation clustering serves as a basic means to achieve this goal:
given a similarity measure between items, the goal is to group similar items together
and dissimilar items apart. In contrast to other clustering approaches, the number of
clusters is not determined a priori, and good solutions aim to balance the tension between
grouping all items together versus isolating them [3].

© Springer International Publishing AG 2017
Y. Tan et al. (Eds.): DMBD 2017, LNCS 10387, pp. 61–73, 2017.
DOI: 10.1007/978-3-319-61845-6_7

Clustering has been used in many areas such as machine learning, pattern recogni‐
tion, image processing, marketing and customer analysis, agriculture, security and crime
detection, information retrieval, and bioinformatics [1].

Clustering algorithms can be categorized into partitioning methods, hierarchical
methods, density-based methods, grid-based methods, and model-based methods.
Recently, quantum clustering, spectral clustering, and synchronization clustering have
been presented and gained some attention.

In this paper MLlib clustering algorithms are described. Rest of the paper is struc‐
tured as follows: Sect. 2 consists of related works, Sect. 3 describes Spark MLlib clus‐
tering algorithms. Section 4 includes comparison by experimental setup. Section 5
represents conclusions.

2 Related Works

In this section, we provide a brief description of the related works. Daniel Gómez et al.
[2] introduced a hierarchical clustering algorithm in networks based upon a first divisive
stage to break the graph and a second linking stage which is used to join nodes. They
show that this algorithm is very flexible as well as quite competitive in relation with a
set previous algorithms.

Madjid Khalilian et al. [4] proposed method Divide-and-Conquer Stream and
compared it with Stream and incremental online Con-Stream for efficiency and accuracy
in clustering results in data stream clustering. Stream utilizes Divide-and-Conquer
method to overcome difficulties in data stream clustering and should be distinguished
from the proposed method. Divide-and-Conquer Stream uses Divide-and-Conquer
method based on length of vector as it is described later whereas Stream divides data by
using sampling. In another study [5], he evaluate different aspects of existing obstacles
in data stream clustering.

Renxia Wan et al. [6] extended Fuzzy C-Means and proposed a weighted fuzzy
algorithm for clustering data stream. The algorithm tries to fuzzily cluster data stream.
Their Experimental results on both standard datasets KDD-CUP’99 and synthetic data‐
sets show its superiority over the traditional FCM algorithms.

Jingdong Wang et al. [7] proposed a novel approximate k-means algorithm to greatly
reduce the computational complexity in the assignment step. Their approach is moti‐
vated by the observation that most active points changing their cluster assignments at
each iteration are located on or near cluster boundaries.

Francesco Finazzi et al. [8] considered two approaches for clustering of time series.
The first is a novel approach based on a modification of classic state-space modelling
while the second is based on functional clustering. For the latter, both k-means and
complete-linkage hierarchical clustering algorithms are adopted. The two approaches
are compared using a simulation study. For more details see [8].

Matthias Brust et al. [9] proposed a 3-D clustering algorithm for autonomous posi‐
tioning (virtual forces based clustering algorithm) of aerial drone networks based on
virtual forces. These virtual forces induce interactions among drones and structure the
system topology. According to their statements, the advantages of their approach are

62 S. Harifi et al.

that virtual forces enable drones to self-organize the positioning process and virtual
forces based clustering algorithm can be implemented entirely localized.

Celal Ozturk et al. [10] improved searching mechanism of the discrete binary arti‐
ficial bee colony algorithm by the efficient genetic selection and they tested its perform‐
ance on the dynamic clustering problem, in which the number of clusters is determined
automatically. Moreover, they demonstrated the superiority of their proposed algorithm
by comparing it with the discrete binary artificial bee colony, binary particle swarm
optimization (BPSO), genetic algorithm (GA), Fuzzy C-means (FCM) and k-means
algorithms on benchmark problems.

Shifei Ding et al. [11] reviewed the development and trend of data stream clustering
and analyzes typical data stream clustering algorithms proposed in recent years, such as
Birch algorithm, Local Search algorithm, Stream algorithm and CluStream algorithm.
They also summarized the latest research achievements in this field and introduced some
new strategies to deal with outliers and noise data.

Yan et al. [12] proposed a multitask clustering framework for activity of daily living
analysis from visual data gathered from wearable cameras. Their intuition is that, even
if the data are not annotated, it is possible to exploit the fact that the tasks of recognizing
everyday activities of multiple individuals are related, since typically people perform
the same actions in similar environments. For more details see [12].

3 Spark.MLlib Clustering Algorithms

Apache Spark is a cluster computing platform that is used for general purposes and
designed to be fast [13, 14].

On the speed side, Spark expands MapReduce model to support more types of
computing like interactive queries and stream processing. Speed is very important in
processing large datasets, as it means the difference between exploring data interactively
and waiting minutes or hours. One of the main features that Spark proposes for speed,
is the ability to compute in memory. But this system is more efficient than the Hadoop
MapReduce to run complex applications on disk, as well.

On the generality side, Spark is designed to cover a wide range of workloads that
were previously required separate distributed systems, including batch applications,
algorithms, iterative, interactive query and streaming. By supporting these workloads
in the same engine, Spark makes easy and inexpensive, the combination of different
types of processing are often required in production data analysis pipelines. Spark offers
APIs in Java, Scala and Python. Spark components are shown in Fig. 1.

MLlib package includes common machine learning functionality that is the focus of
this paper. MLlib includes several types of machine learning algorithms such as classi‐
fication, regression, clustering and collaborative filtering and also includes model eval‐
uation and data import. In the following MLlib clustering algorithms are described.

Comparative Study of Apache Spark MLlib Clustering Algorithms 63

Spark SQL
Structured Data

Spark
Streaming
Real-Time

MLib
Machine
Learning

GraphX
Graph Processing

Spark Core

Standalone Scheduler YARN Mesos

Fig. 1. Spark components [13].

3.1 Gaussian Mixture Model

Model-based clustering is assumed the data comes from a source with several subpo‐
pulations. Each subpopulations are modeled individually and the entire population is a
mixture of these sub-populations. The final model is a finite mixture model [15]. When
data are multivariate continuous observations, the component parameterized density is
usually a multidimensional Gaussian density [15].

According to the model-based perspective, each cluster can be mathematically
provided by a parametric distribution. All datasets can be modeled by a mixture of these
distributions [16]. The model widely used is a mixture of Gaussians:

P(x|Θ) =
∑K

i=1
𝛼ipi(x|𝜃i). (1)

where each pi is a Gaussian density function parameterized by 𝜃i and

Θ =
(
𝛼1,… , 𝛼K , 𝜃1,… , 𝜃K

)
 such that

K∑

i=1
𝛼i = 1. Here it is assumed k component densities

mixed together with k mixing coefficients 𝛼i. In Eq. (1)X =
(
x1,… , xm

)
 is a set of data

points. It is expected to find Θ such that p(X|Θ) is a maximum. This is known as the
Maximum Likelihood (ML) estimate for Θ. In order to estimate Θ, it is typical to intro‐
duce the log-likelihood function defined as follows:

(Θ) = log P(X|Θ) = log
∏m

i=1
P
(
xi|Θ

)
=
∑m

i=1
log

(
K∑

j=1

𝛼ipj

(
xi|𝜃j

)
)

. (2)

3.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model of a corpus. The
basic idea is that documents are represented as random mixtures over latent topics, where
each topic is characterized by a distribution over words [18]. More generally, LDA helps
to explain the similarity of data by grouping features of this data into unobserved sets. A
mixture of these sets then constitutes the observable data [19]. LDA was first introduced
by Blei et al. [18]. The modeling process of LDA can be described as finding a mixture
of topics for each resource, i.e., P(z|d), with each topic described by terms following
another probability distribution [19], i.e., P(t|z). This can have such formula as:

64 S. Harifi et al.

P
(
ti|d

)
=
∑z

j=1
P(ti|zi = j)P(zi = j|d). (3)

where P(ti|d) is the probability of the i th term for a given document d and zi is the latent
topic. P(ti|zi = j) is the probability of ti within topic j. P(zi = j|d) is the probability of
picking a term from topic j in the document. The number of latent topics Z has to be
defined in advance and allows to adjust the degree of specialization of the latent topics.

3.3 Power Iteration Clustering

For power iteration, Consider a set of data points: {x1, x2,…, xn}, where x is a d-dimen‐
sional vector, and some notion of similarity, for example:

s
(
xi, xj

)
= exp

⎛
⎜
⎜
⎜
⎝

−

‖
‖
‖

xi − xj

‖
‖
‖

2

2

2𝜎2

⎞
⎟
⎟
⎟
⎠

. (4)

where 𝜎 is a scaling parameter that controls the kernel width. An affinity matrix A can
built with aij = s

(
xi, xj

)
 if i ≠ j and aij = 0 if i = j. The degree matrix associated with A,

denoted by D, is a diagonal matrix with the diagonal entries equal to the row sums of
A, i.e., Dii =

∑

j

Aij. A normalized random-walk Laplacian matrix L is defined as

L = Δ − D−1A [26], where Δ is the identity matrix. The intrinsic clustering structure is
often revealed by representing the data in the basis composed of the smallest eigenvec‐
tors of L. The very smallest eigenvector is a constant vector that doesn’t have discrim‐
inative power. In another matrix W = D−1A defining, the largest eigenvector is the
smallest eigenvector of L. A well-known method for computing the largest eigenvector
of a matrix is Power Iteration (PI), which randomly initializes an N-dimensional vector
𝜐0 and iteratively updates the vector by multiplying it with W,

𝜐t = 𝛾W𝜐t−1, t = 1, 2,… (5)

where 𝛾 is a normalizing constant to keep 𝜐t numerically stable.
An interesting property of the largest eigenvector of W discovered by Lin and Cohen

[21]. They called their algorithm Power Iteration Clustering (PIC), which its details is
in [21]. PIC is computationally efficient since it only involves iterative matrix–vector
multiplications and clustering of the one dimensional embedding of the original data,
which is relatively easy to do. However, similar to other spectral clustering algorithms,
a bottleneck for PIC when applied to large datasets lies in the calculation and storage of
big matrices [22].

The spark.mllib includes an implementation of PIC using GraphX as its backend. It
takes a resilient distributed datasets of (srcId, dstId, similarity) tuples and outputs a
model with the clustering assignments. The similarities must be nonnegative. PIC
assumes that the similarity measure is symmetric. A pair (srcId, dstId) regardless of the

Comparative Study of Apache Spark MLlib Clustering Algorithms 65

ordering should appear at most once in the input data. If a pair is missing from input,
their similarity is treated as zero.

3.4 k-means

k-means clustering is a method commonly used to automatically partition a dataset into
k groups [23]. The number of clusters k is assumed to be fixed in k-means clustering.
Let the k prototypes

(
w1, w2,… , wk

)
 be initialized to one of the n input patterns

(
i1, i2,… , in

)
. Therefore, wj = il, j ∈ {1, 2,… , k}, l ∈ {1, 2,… , n}. Cj is the jth cluster

whose value is a disjoint subset of input patterns. The quality of the clustering is deter‐
mined by the following error function [24]:

E =
∑k

j=1

∑

il∈Cj

|
|
|
il − wj

|
|
|

2
. (6)

The number of iterations required can vary in a wide range from a few to several
thousand depending on the number of patterns, number of clusters, and the input data
distribution. Thus, a direct implementation of the k-means method can be computation‐
ally very intensive. This is especially true for typical data mining applications with large
number of pattern vectors.

k-means||. The spark.mllib implementation includes a parallelized variant of the k-
means++ method called k-means|| [17]. A parallel version of the k-means++ initiali‐
zation algorithm is obtained and empirically demonstrate its practical effectiveness. The
main idea is that instead of sampling a single point in each pass of the k-means++ algo‐
rithm, O(k) points in each round is sampled and repeat the process for approximately
O(log n) rounds [25]. At the end of the algorithm, O(k log n) points are left form a solution
that is within a constant factor away from the optimum. These O(k log n) points into k
initial centers for the Lloyd’s iteration are clustered again. This initialization algorithm,
which is called k-means||, is quite simple and lends itself to easy parallel implementa‐
tions. However, the analysis of the algorithm turns out to be highly non-trivial, requiring
new insights, and is quite different from the analysis of k-means++.

Bisecting k-means. Bisecting k-means can often be much faster than regular k-means,
but it will generally produce a different clustering [17]. Bisecting k-means is a kind of
hierarchical clustering. Hierarchical clustering is one of the most commonly used
method of cluster analysis which seeks to build a hierarchy of clusters. Also the bisecting
k-means has a time complexity which is linear in the number of documents. If the number
of clusters is large and if refinement is not used, then bisecting k-means is even more
efficient than the regular k-means algorithm.

Streaming k-means. When data arrive in a stream, we may want to estimate clusters
dynamically, updating them as new data arrive. The spark.mllib also provides support
for streaming k-means clustering, with parameters to control the decay or forgetfulness
of the estimates. The algorithm uses a generalization of the mini-batch k-means update

66 S. Harifi et al.

rule. For each batch of data, all points to their nearest cluster are assigned, compute new
cluster centers, then update each cluster.

4 Comparison by Experimental Setup

In this section at first the system configuration is introduced and then datasets used in
this paper are described. Then the experiments along with their tables are explained and
finally the graph of each experiment is shown.

4.1 Configuration

All evaluation experiments have been run on a Core™ processor Intel® CPU i7-4930MX
3.00 GHz with 32 GB RAM and GNU/Linux Ubuntu 16.04 operating system. Imple‐
mentations have been run on Spark 1.6.1-Scala 2.10.5 for coding.

4.2 Data Sets

We use three benchmark datasets to evaluate the large scale clustering performance:

Forest Cover Type. The Forest Cover Type dataset [27] is composed of 581,012 data
points from the US Geological Survey (USGS) and the US Forest Service (USFS). Each
data point is represented by a vector of 54 dimensions and assigned to one of 7 classes,
each class representing a Forest Cover Type. This is a challenging dataset for any clus‐
tering algorithm as it contains ten continuous features, and 44 binary features (four
wilderness types and 40 soil types) [28].

KDD Cup 99. Since 1999, KDD’99 has been the most wildly used dataset for the
evaluation of anomaly detection methods. This dataset is built based on the data captured
in DARPA’98 IDS evaluation program. DARPA’98 is about four gigabytes of
compressed raw (binary) tcpdump data of seven weeks of network traffic, which can be
processed into about five million connection records, each with about 100 bytes. The
two weeks of test data have around two million connection records. KDD training dataset
consists of approximately 4,900,000 single connection vectors each of which contains
41 features and is labeled as either normal or an attack, with exactly one specific attack
type [28].

Internet Advertisements. The Internet Advertisements dataset is available through
the UCI Machine Learning Repository [30]. The 3279 instances of this dataset represent
image advertisements and the rest do not. There are missing value in approximately 20
percent of the instances. The proposed task is to determine which instances contain
advertisements based on 1557 other attributes related to image dimensions, phrases in
the URL of the documents or the images, and text occurring in or near the image’s anchor
tag in the documents. The first three attributes encode the image’s geometry. The binary
local feature indicates whether the image URL points to a server in the same internet

Comparative Study of Apache Spark MLlib Clustering Algorithms 67

domain as the document URL. The remaining features are based on phrases in various
parts of the documents [29].

4.3 Experiments

In this subsection, the experiments and their tables are explained. Please note that in all
experiments, the unit of time is second and time refers to training time1. Also, unit of
cohesion is Davies Bouldin Cohesion [20].

Table 1. Running k-means on KDD Cup 99 with/without Max Iterations

K Value A. k-means on KDD Cup 99 B. k-means on KDD Cup 99 (Max Iterations)
1. KDD Cup 99 (10%) 2. KDD Cup 99 (100%) 1. KDD Cup 99 (10%) 2. KDD Cup 99 (100%)
Cohesion TT(S) Cohesion TT(S) Cohesion TT(S) Cohesion TT(S)

10 19.59062076 2.707 20.46709771 13.452 19.21086 2.472 20.15667 12.907
20 17.60970038 2.553 15.83935119 19.674 18.08498 3.773 19.62121 29.413
30 13.75523234 2.855 14.70325715 22.295 17.55708 5.778 19.4199 42.413
40 14.38443687 3.085 17.22224174 23.761 18.82096 3.213 18.88906 26.718
50 13.09798986 4.047 15.13062897 23.970 18.63252 3.701 19.83298 24.724
60 12.68632938 3.572 14.56952279 25.982 21.96627 3.250 19.8327 37.368
70 11.07109838 3.275 14.75204737 35.910 22.90242 4.655 19.00778 22.229
80 10.80793379 3.887 13.5979721 29.095 17.91366 3.836 22.73483 27.774
90 9.862917001 4.027 12.2244106 32.993 21.45907 6.883 19.41999 47.379

100 8.850165571 4.767 10.57837409 40.724 17.62087 3.485 19.18537 35.456

Experiment 1. In the first experiment k-means algorithm is applied on 10 percent KDD
Cup 99 dataset and its iteration is considered 10. The results are shown in Table 1(A-1).
As can be seen in the Table 1(A-1), if the lowest value (10) considered for k, In terms
of time the best clustering time is achieved, but the cohesion of clusters are not suitable.
If the value of k is increased, the cohesion is increased too, and therefore more time is
spent on clustering. So the best time of clustering is when k value is low, and most
coherent clusters are achieved when k value is high.

Experiment 2. In this experiment, experiment 1 is repeated with 100 percent data of
KDD Cup 99 dataset. The expected results are achieved. The obtained time and cohesion
in experiment 1 are repeated with higher scale in experiment 2. Table 1(A-2) shows k-
means experiment with 100 percent of KDD Cup 99 data. As can be seen in Table 1(A-2),
if k value is considered the highest value (100), the cohesion becomes very appropriate
and the time becomes very inappropriate. The time is approximately 40 s.

Experiment 3. In this experiment, the previous experiments are done with max itera‐
tions. The results of experiment 3 are shown in Table 1(B). As can be seen in the
Table 1(B-1), with max iterations the time is improved generally and clusters becomes
more coherent as well. As can be seen in the Table 1(B-2), k-means algorithm run with

1 TT(S) in all Tables describes Training Time (Second).

68 S. Harifi et al.

max iterations on full KDD Cup 99 dataset. If the iterations become more, the more
coherent clusters with lower time of running are achieved.

Experiment 4. In this experiment, k-means algorithm is applied on the Forest Cover
Type dataset. The iteration is considered 10 in this experiment. The results are shown
in Table 2(C-1).

Table 2. Running k-means and Bisecting k-means on Forest Cover Type and Ads Dataset

K Value C. Forest Cover Type dataset D. Internet Advertisements dataset
1. k-means 2. Bisecting k-means 1. k-means 2. Bisecting k-means
Cohesion TT(S) Cohesion TT(S) Cohesion TT(S) Cohesion TT(S)

10 43.0750461 4.034 44.0392431 11.906 1300.92123 1.340 1328.03257 2.107
20 32.5306901 9.409 38.6940653 17.051 1232.96979 1.725 1263.92542 1.927
30 27.413065 9.927 33.0507343 20.645 1153.17953 2.470 1213.8558 1.954
40 19.6669817 9.025 29.1864917 17.280 1066.70068 2.978 1141.27995 2.353
50 20.8943908 9.829 26.4425548 32.512 1035.76626 4.043 1051.90256 2.414
60 12.5754266 11.644 21.0348994 29.417 987.513667 4.500 1006.61273 2.994
70 14.8703284 13.782 20.0067657 25.880 873.877784 5.043 934.134936 3.113
80 10.0004226 15.651 18.7004353 26.935 816.97583 5.738 826.726687 3.107
90 9.5745834 17.078 17.4730561 28.264 784.340603 6.267 803.771187 3.787

100 10.9289989 16.593 17.0222951 26.964 727.975713 11.114 756.455351 3.847

Experiment 5. In this experiment, the Bisecting k-means algorithm is applied on the
Forest Cover Type dataset and the iterations considered 10, the same as experiment 4.
The results are shown in Table 2(C-2). Experiments 4 and 5 show that k-means algo‐
rithm, has better performance both in terms of time and in terms of cohesion in compar‐
ison with Bisecting k-means algorithm on the Forest Cover Type dataset.

Experiment 6. In this experiment k-means algorithm is applied on the Internet Adver‐
tisements dataset. The iteration is also considered 10 like the previous experiments. The
results are shown in Table 2(D-1).

Experiment 7. In this experiment, Bisecting k-means algorithm is applied on the
Internet Advertisements dataset and the iteration is considered 10 again and results are
shown in Table 2(D-2). Experiments 6 and 7 show that in Internet Advertisements
dataset, Bisecting k-means algorithm has better performance in terms of time. Both k-
means and Bisecting k-means algorithms are approximately similar in terms of cohesion.

4.4 Comparisons

In this subsection for a better understanding of the results of the experiments, separately
and based on dataset, time and cohesion, the algorithms are compared. Figures 2, 3, 4
and 5 show graphs related to each comparison.

Comparative Study of Apache Spark MLlib Clustering Algorithms 69

0

2

4

6

8

10

12

10 20 30 40 50 60 70 80 90 100

Chart Title

Series1 Series2

0

1

2

3

4

5

6

7

8

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

TI
M

E
(S

)

K VALUE

K-Means K-Means maxIterations

0

2

40

42

60

62

80

82

10

12

40 60 80 10 20 30 50 70 90 400

Chart Title

Series4 Series6

0

5

10

15

20

25

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

CO
HE

SI
ON

K VALUE

K-Means K-Means maxIterations

Fig. 2. Left graph: Comparison of k-means and k-means maxIterations training time on KDD
Cup (10%). Right graph: Comparison of k-means and k-means maxIterations cohesion on KDD
Cup (10%).

0
10
20
30
40
50
60
70
80
90

10 20 30 40 50 60 70 80 90 100

Chart Title

Series1 Series2

0
5

10
15
20
25
30
35
40
45
50

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

TI
M

E
(S

)

K VALUE

K-Means K-Means maxItera tions

0

5

10

15

20

25

30

35

40

45

10 20 30 40 50 60 70 80 90 100

Chart Title

Series1 Series2

0

5

10

15

20

25

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

CO
HE

SI
O

N

K VALUE

K-Means K-Means maxItera tions

Fig. 3. Left graph: Comparison of k-means and k-means maxIterations training time on KDD
Cup (100%). Right graph: Comparison of k-means and k-means maxIterations cohesion on KDD
Cup (100%).

0
2

40
42
60
62
80
82
10
12
20

40 60 80 10 20 30 50 70 90 400

Chart Title

Series4 Series6

0

5

10

15

20

25

30

35

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

TI
M

E
(S

)

K VALUE

K-Means Bisecting K-Means

0
20
40
60
80
10
30
50
70
90

200

20 40 60 80 10 30 50 70 90 200

Chart Title

Series2 Series4

0
5

10
15
20
25
30
35
40
45
50

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

C
O

H
ES

IO
N

K VALUE

K-Means Bisecting K-Means

Fig. 4. Left graph: Comparison of k-means and Bisecting k-means training time on FCT dataset.
Right graph: Comparison of k-means and Bisecting k-means cohesion on FCT dataset.

70 S. Harifi et al.

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80 90 100

Chart Title

Series1 Series2

0

2

4

6

8

10

12

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

TI
M

E
(S

)

K VALUE

K-Means Bisecting K-Means

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Chart Title

Series1 Series2

0

200

400

600

800

1000

1200

1400

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

C
O

HE
SI

O
N

K VALUE

K-Means Bisecting K-Means

Fig. 5. Left graph: Comparison of k-means and Bisecting k-means training time on Ads dataset.
Right graph: Comparison of k-means and Bisecting k-means cohesion on Ads dataset.

5 Conclusions

In this paper, at first MLlib library clustering algorithms are described in details. Being
brief and usefulness of descriptions can help the researchers for future works. Then
comparison of two algorithms, Bisecting k-means and k-means on three datasets, KDD
Cup 99, forest cover type and was Internet Advertisements is done. Algorithms that
compared with each other, were the same. In the experiments, Power-Iteration algorithm
was not compared because it uses graph as an input. Low speed of GMM algorithm on
the selected datasets was the reason of ignoring it in comparison with other algorithms.
For example, for GMM algorithm in conditions similar to experiment 1, if the value of
k equals 10, the amount of cohesion is 27.813 and train time is 973.058 s. So, this
algorithm is non-optimal and slow and is not suitable for using in big data. LDA algo‐
rithm is also using with documents. The results of experiments and the comparisons
show that depending on the circumstances, type and dimension of data, each algorithm
can be best in clustering. Graphs of time and cohesion are applied in this paper to find
a better view of the results of the experiments.

Future works can be the comparison of other MLlib library clustering algorithms.
Even other parts of spark such as GraphX, Spark Streaming and Spark SQL can be
compared. Being brief and usefulness of descriptions of other parts also can help to the
quality of studies and reducing the time of research.

References

1. Chen, X.: A new clustering algorithm based on near neighbor influence. Expert Syst. Appl.
42, 7746–7758 (2015)

2. Gómez, D., Zarrazola, E., Yáñez, J., Montero, J.: A Divide-and-Link algorithm for hierarchical
clustering in networks. Inf. Sci. 316, 308–328 (2015)

3. Pan, X., Papailiopoulos, D., Oymak, S., Recht, B., Ramchan-dran, K., I. Jordan, M.: Parallel
correlation clustering on big graphs. In: Advances in Neural Information Processing Systems,
pp. 82–90 (2015)

4. Khalilian, M., Mustapha, N., Sulaiman, N.: Data stream clustering by divide and conquer
approach based on vector model. J. Big Data 3, 1 (2016)

Comparative Study of Apache Spark MLlib Clustering Algorithms 71

5. Khalilian, M., Mustapha, N., Sulaiman, N., Mamat, A.: Different aspects of data stream
clustering. In: Elleithy, K., Sobh, T. (eds.) Innovations and Advances in Computer.
Information, Systems Sciences, and Engineering, pp. 1181–1191. Springer, New York (2013).
doi:10.1007/978-1-4614-3535-8_97

6. Wan, R., Yan, X., Su, X.: A weighted fuzzy clustering algorithm for data stream. In: 2008
ISECS International Colloquium on Computing, Communication, Control, and Management,
pp. 360–364. IEEE (2008)

7. Wang, J., Wang, J., Ke, Q., Zeng, G., Li, S.: Fast approximate k-means via cluster closures.
In: Multimedia Data Mining and Analytics, pp. 373–395. Springer International Publishing
(2015)

8. Finazzi, F., Haggarty, R., Miller, C., Scott, M., Fassò, A.: A comparison of clustering
approaches for the study of the temporal coherence of multiple time series. Stochast. Environ.
Res. Risk Assess. 29, 463–475 (2014)

9. Brust, M.R., Turgut, D.: VBCA: a virtual forces clustering algorithm for autonomous aerial
drone systems. In: 2016 Annual IEEE Systems Conference (SysCon), pp. 1–6. IEEE (2016)

10. Ozturk, C., Hancer, E., Karaboga, D.: Dynamic clustering with improved binary artificial bee
colony algorithm. Appl. Soft Comput. 28, 69–80 (2015)

11. Ding, S., Wu, F., Qian, J., Jia, H., Jin, F.: Research on data stream clustering algorithms. Artif.
Intell. Rev. 43, 593–600 (2015)

12. Yan, Y., Ricci, E., Liu, G., Sebe, N.: Egocentric daily activity recognition via multitask
clustering. IEEE Trans. Image Process. 24, 2984–2995 (2015)

13. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark: Lightning-Fast Big Data
Analysis. O’Reilly Media, Inc., (2015)

14. Meng, X., Bradley, J., Yuvaz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J.: Mllib:
machine learning in apache spark. JMLR 17(34), 1–7 (2016)

15. Maugis, C., Celeux, G., Martin-Magniette, M.: Variable selection for clustering with gaussian
mixture models. Biometrics 65, 701–709 (2009)

16. He, X., Cai, D., Shao, Y., Bao, H., Han, J.: Laplacian regularized gaussian mixture model for
data clustering. IEEE Trans. Knowl. Data Eng. 23, 1406–1418 (2011)

17. Clustering - RDD-based API - Spark 2.1.0 Documentation. http://spark.apache.org/docs/
latest/mllib-clustering.html

18. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–
1022 (2003)

19. Krestel, R., Fankhauser, P., Nejdl, W.: Latent dirichlet allocation for tag recommendation. In:
Proceedings of the Third ACM Conference on Recommender Systems, pp. 61–68. ACM
(2009)

20. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-1, 224–227 (1979)

21. Lin, F., Cohen, W.: Power iteration clustering. In: Proceedings of the 27th International
Conference on Machine Learning (ICML 2010), pp. 655–662 (2010)

22. Yan, W., Brahmakshatriya, U., Xue, Y., Gilder, M., Wise, B.: p-PIC: parallel power iteration
clustering for big data. J. Parallel Distrib. Comput. 73, 352–359 (2013)

23. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with
background knowledge. In: ICML, pp. 577–584 (2001)

24. Alsabti, K., Ranka, S., Singh, V.: An efficient k-means clustering algorithm. Electrical
Engineering and Computer Science (1997)

25. Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassil-vitskii, S.: Scalable k-means++.
Proc. VLDB Endowment 5, 622–633 (2012)

26. Meila, M., Shi, J.: A random walks view of spectral segmentation (2001)

72 S. Harifi et al.

http://dx.doi.org/10.1007/978-1-4614-3535-8_97
http://spark.apache.org/docs/latest/mllib-clustering.html
http://spark.apache.org/docs/latest/mllib-clustering.html

27. Blackard, J., Dean, D.: Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Comput. Electron. Agric.
24, 131–151 (1999)

28. Kumar, D., Bezdek, J., Palaniswami, M., Rajasegarar, S., Leckie, C., Havens, T.: A hybrid
approach to clustering in big data. IEEE Trans. Cybern. 46, 2372–2385 (2016)

29. Alvarez, S.A., Kawato, T., Ruiz, C.: Mining over loosely coupled data sources using neural
experts. In: International Workshop on Multimedia Data Mining. In Conjunction with the
Ninth ACM SIGKDD International Conference on Knowledge Dis-cover and Data Mining
(2003)

30. Lichman, M.: UCI Machine Learning Repository. University of California, School of
Information and Computer Science, Irvine, CA (2013). http://archive.ics.uci.edu/ml

Comparative Study of Apache Spark MLlib Clustering Algorithms 73

http://archive.ics.uci.edu/ml

	Comparative Study of Apache Spark MLlib Clustering Algorithms
	Abstract
	1 Introduction
	2 Related Works
	3 Spark.MLlib Clustering Algorithms
	3.1 Gaussian Mixture Model
	3.2 Latent Dirichlet Allocation
	3.3 Power Iteration Clustering
	3.4 k-means

	4 Comparison by Experimental Setup
	4.1 Configuration
	4.2 Data Sets
	4.3 Experiments
	4.4 Comparisons

	5 Conclusions
	References

