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Abstract—A neuro-fuzzy system is a learning machine that finds 

the parameters of a fuzzy system using approximate techniques of 
neural networks. Both neural network and fuzzy system have 
common features. These can solve problems that there is no 
mathematical model for them. Adaptive Neuro-Fuzzy Inference 
System (ANFIS) is an adaptive network that uses supervised 
learning on learning algorithm. Selecting the optimization method 
in training, to achieve effective results with ANFIS is very 
important. Heuristics and metaheuristics algorithms attempt to 
find the best solution out of all possible solutions to an optimization 
problem. ANFIS training can be based on non-derivative 
algorithms. Heuristics and metaheuristics are non-derivative 
algorithms that can lead to better performance in ANFIS training. 
Most heuristic and metaheuristic algorithms are taken from the 
behavior of biological systems or physical systems in nature. The 
newly released Emperor Penguins Colony (EPC) algorithm is a 
population-based and nature-inspired metaheuristic algorithm. 
This algorithm has many potentials for solving various problems. 
In this paper, an optimized ANFIS based on the newly EPC 
algorithm is proposed. The optimized ANFIS is compared with 
other non-derivative algorithms on benchmark datasets. 
Eventually, the proposed algorithm is used to solve the classical 
inverted pendulum problem. The results show that the proposed 
ANFIS based on the EPC algorithm has less error and better 
performance than other state-of-the-art algorithms in both 
training and testing phase. 
 

Index Terms—Optimization, Neuro-Fuzzy system, Emperor 
Penguins Colony algorithm, nature inspired, ANFIS, Fuzzy 
inference system, Sugeno-type fuzzy 
 

I. INTRODUCTION 

EURO-FUZZY computing is a popular framework for 
solving complex problems. A neuro-fuzzy system is a 
fuzzy system that uses a learning algorithm. This system 

determines the fuzzy system parameters by processing data 
samples. The learning procedure of a neuro-fuzzy system takes 
the semantically properties of the basic fuzzy system into 
account. This results in constraints on the possible 
modifications applicable to the system parameters.  

Optimization is the mathematical process, the process of 
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adjusting the inputs of a device, or experiment to find the 
minimum or maximum output or result. Inputs include 
variables, such as process or function as cost function, target 
function, fitness function, and outputs include cost and fitness. 
Optimization algorithms attempt to find the best solution out of 
all possible solutions to an optimization problem. 

Recently, the use of optimization and evolutionary 
algorithms have increased in the design of neuro-fuzzy systems. 
This increase in usage maybe due to their multifold advantages. 
Some of these advantages include scalability to high-
dimensional solution spaces, parallel architecture, and 
simplicity of implementation [1]. Optimization and 
evolutionary algorithm, fuzzy theorem, and neural networks are 
three basic paradigms of soft computing [2]. 

The Fuzzy Inference System (FIS) has fuzzy sets, fuzzy 
operators and the knowledge base. A FIS needs to specify 
architecture and learning algorithm for a specific application, 
which is similar to the Artificial Neural Network (ANN). Both 
FIS and ANN have some drawbacks but these two approaches 
are complementary. So building an integrated system 
combining the concepts can be a good idea. ANN learning 
capability is an advantage from the viewpoint of FIS [3]. 

The two popular FIS are Sugeno-type and Mamdani type. 
Sugeno neuro-fuzzy computing method uses the theory of 
neural network and Mamdani-type fuzzy logic system 
technique as a robust tool for solving various problems with the 
high level of uncertainty in science and engineering problems 
concerned with issues such as pattern recognition, 
identification, controlling [4]. 

Many authors combine optimization algorithms with neuro-
fuzzy systems. Zheng et al [1] used the Differential 
Biogeography-Based Optimization (DBBO) algorithm for 
parameter optimization of Sugeno type neuro-fuzzy system. 
Their experiments showed that the method provided by them 
was a good performance. Taghavifar et al [4] represented a 
Sugeno type neuro-fuzzy system in combination with the 
Differential Evolution (DE) optimization algorithm. They used 
their method to model wheel dynamics caused by road 
irregularities. Toosi and Kahani [5] utilized the Genetic 
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Algorithm (GA) for the optimization of their neuro-fuzzy 
system. They used their system to detect intrusion. Obo et al [6] 
exploited GA, Evolutionary Programming (EP), and Evolution 
Strategy (ES) for parameter tuning and pruning of membership 
functions in the neuro-fuzzy system. Their purpose was the 
classification of human gestures. Chen et al [7] presented a 
Sugeno fuzzy system based on tuning the parameters using EP. 
Juang and Chang [8] designed fuzzy-rule-based systems using 
Ant Colony Optimization (ACO).  

In other studies, Pandiarajan and Babulal [9] utilized the 
integration of the fuzzy logic system with harmony search (HS) 
algorithm to find the optimal solution for optimal power flow 
problem in a power system. Precup et al [10] proposed a tuning 
approach for a fuzzy control system using Gray Wolf Optimizer 
(GWO). Shi et al [11] discussed evolutionary fuzzy systems in 
their paper. Hancer et al [12] proposed a feature selection 
approach using fuzzy mutual information based on the 
Artificial Bee Colony (ABC) algorithm. 

The neuro-fuzzy system in combination with Particle Swarm 
Optimization (PSO) has been applied to many real-world 
engineering problems. Chatterjee et al [13] adopted the PSO 
fuzzy-neural network for voice-controlled robot systems. 
Araujo and Coelho [14] provided PSO fuzzy modeling for an 
experimental thermal-vacuum system. Sharma et al [15] 
designed a stable adaptive fuzzy controller based on 
combination with PSO. Wai et al [16] represented an intelligent 
daily load forecasting with a fuzzy neural network and PSO. Li 
et al [17] proposed solubility prediction of gases in polymers 
using a fuzzy neural network based on the PSO algorithm. 
Osório et al [18] combined the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) with the PSO algorithm for wind 
power forecasting application. Chen et al [19] constructed three 
algorithms for training the ANFIS. The optimization algorithms 
used by them were GA, PSO, and DE. They used their method 
as a data mining technique for the geographic information 
system. Many ANFIS training approaches have been reviewed 
in the paper written by Karaboga and Kaya [20]. 

The recently published Emperor Penguins Colony (EPC) 
[21] algorithm, is a population-based and nature-inspired 
optimization algorithm. This algorithm inspired by the behavior 
of the emperor penguins in Antarctica. This algorithm has a lot 
of potential in solving various and high-dimensional problems. 
In this paper, the neuro-fuzzy system is combined with the EPC 
algorithm. In fact, using the EPC algorithm, the neuro-fuzzy 
system is optimally designed. 

In general, the design steps of an optimal neuro-fuzzy system 
are as follows: Receive the training data; Creating a basic fuzzy 
system; Adjustment the parameters of the basic fuzzy system 
according to the modeling error function by the optimization 
algorithm; Returning of the fuzzy system has the best value of 
the parameters (minimum value of the error function) as the 
final result. 

In this paper, a neuro-fuzzy system based on adaptive neuro-
fuzzy inference system is designed. Then, the parameters of 
membership functions are extracted. After that, the parameters 
are optimized by the EPC optimization algorithm. Eventually, 
we return the optimized parameters to the system. The purpose 

is efficient optimizing the neuro-fuzzy system by using high 
flexibility and abundant potentials of the EPC algorithm. 

Rest of the paper is structured as follows: Section II describes 
the EPC optimization algorithm in detail. Section III represents 
designing a neuro-fuzzy system. Section IV includes 
experimental results. Section V represents the statistical 
analysis. Section VI expresses the results of solving a classic 
engineering problem by the EPC algorithm. Finally, discussion 
and conclusions are provided in section VII and VIII, 
respectively.  

II. EMPEROR PENGUINS COLONY (EPC) ALGORITHM 

In this section, the EPC algorithm is described briefly. 
Although the comprehensive description and explanatory 
details of the algorithm are presented by Harifi et al in [21]. 

The Emperor Penguins (Aptenodytes forsteri) are the largest 
species of penguins that live in Antarctica and on the sea-ice. 
The height of these penguins is about 110 to 130 cm in the 
walking mode and when extending its neck. The temperature of 
their living environment sometimes reaches -40 °C. To 
breeding and to escape from the harsh conditions, they have an 
interesting strategy. They form a mass composed of several 
penguins in their colonies, which is called the huddle. Fig 1 
shows the sample of the emperor penguin huddling group.  

 

 
Fig. 1. Emperor penguin huddling group. 
  

When the huddle is formed, the amount of penguin’s body 
heat dissipation is minimized and the temperature inside the 
huddle is raised. To distribute the heat uniformly in different 
parts of the huddle, the penguins perform spiral-like 
coordinated movements. The EPC algorithm is a population-
based and nature-inspired algorithm that is inspired by the 
lifestyle of these penguins. This algorithm is controlled by the 
thermal radiation and spiral-like movement of penguins. 
Algorithm 1 describes the pseudo-code of the EPC algorithm.  

In this algorithm, the heat absorption concept, thermal 
radiation, the attractiveness, and coordinated spiral movement 
must be calculated. To calculate the attractiveness, the heat 
radiation transfer must be calculated and for calculating heat 
radiation, the body surface area of the penguin is needed. The 
body surface area of the penguin is 0.56 m2. Heat transfer 
occurs in three ways: thermal conduction, thermal convection, 
and thermal radiation. In the EPC algorithm, the criterion of the 
heat transfer by radiation is used. Radiation is a criterion of the 
attractiveness for penguins. The radiation emitted from the 
penguin body is obtained by the following equation, 

 ܳ୮ୣ୬୥୳୧୬ = ߪߝܣ ௦ܶସ (1) 
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where ܣ is body surface area of penguin and equal to 0.56 m2. ߝ is emissivity of bird plumage which is considered 0.98 
according to [22]. ߪ is Stefan-Boltzmann constant (5.6703×10-

8 W/m2K4) and ܶ is absolute temperature in Kelvin (K) which 
is considered 35 °C equal to 308.15 Kelvin. 

In physics science, there are three types of heat sources, 
including surface sources, point sources and linear sources, 
which their attenuation coefficient is different for each other. 
According to the type of penguin’s body physics, in the EPC 
algorithm, the heat source is considered linear. From the 
combination of the emitted radiation of the penguin body and 
the linear heat source equation, the attractiveness equation is 
obtained, 
 ܳ = ߪߝܣ ௦ܶସ݁ିఓ௫ (2) 
 
where ߤ is the attenuation coefficient and ݔ is the distance 
between two linear sources. The ߤ parameter is an important 
factor in determining the rate of convergence and is considered 
as a positive value. Heat absorption is a concept defined by 
changes in ߤ. So as the attenuation coefficient decreases, the 
concept of heat absorption increases. That is, more heat is 
absorbed. The attractiveness equation must be combined into 
the spiral movement equation. The spiral movement is usually 
done in a clockwise direction and uses a logarithmic spiral 
equation. Subjective perception of the spiral-like movement is 
shown in Fig 2. 

 

 
Fig. 2. Subjective perception of emperor penguin coordinated spiral movement. 

 
In Fig 2, the penguin moves from point ݅ to ݆, but does not 

reach point ݆. Depending on the amount of attractiveness, it 
moves along the logarithmic spiral path and stops at a point 
around the point ݆. Now the new position is ݇. The equation of 
this movement is as follows, 
௞ݔ  = ܽ݁௕ଵ௕ ୪୬൛(ଵିொ)௘್ഀାொ௘್ഁൟ cos ൜1ܾ ln൛(1 − ܳ)݁௕ఈ + ܳ݁௕ఉൟൠ ݕ௞ = ܽ݁௕ଵ௕ ୪୬൛(ଵିொ)௘್ഀାொ௘್ഁൟ sin ൜1ܾ ln൛(1 − ܳ)݁௕ఈ + ܳ݁௕ఉൟൠ (3) 

 

where ܽ and ܾ are constant and are selected arbitrary. ܳ is 
attractiveness equation. ݔ and ݕ are parameters of logarithmic 

spiral [21]. ߙ and ߚ are ି݊ܽݐଵ ௬೔௫೔ and ି݊ܽݐଵ ௬ೕ௫ೕ, respectively. 

Because the angle information is pre-determined, the spiral-
like movement may become monotonous. To avoid the 
monotonous spiral path, the above equation summed with a 
random vector, 
.ݍܧ  3 + 	߮߳௜ (4) 
 
where ߮ is the mutation factor in the change of path and ߳ is a 
random vector. If the distance between penguins is too big, then 
the attractiveness for most of the better penguins is zero value. 
As a result, the current penguin does not move in a spiral 
movement in the direction of a better one. This is an 
unpredictable case that may happen. In this case, ߮߳௜ helps the 
penguin to move a little bit from its position but does not move 
the spiral. It also helps the diversity. 
 
Algorithm 1: Pseudo code of the Emperor Penguins Colony 
(EPC) algorithm. 
STEP 1: 
    generate initial population array of EPs (Colony Size); 
    generate initial position and cost of each EP;  
    calculate heat radiation (Eq. 1); 
    determine initial attenuation coefficient (ߤ); 
    determine initial mutation coefficient (߮); 
    STEP 2: for FirstIteration to MaxIteration 
         generate repeat copies of population array (as new_pop); 
         STEP 3: for i=1 to n do (all n penguins) 
              STEP 4: for j=1 to n do (all n penguins) 
                   if costj < costi then 
                      determine new position (Eq. 4); 
                      evaluate and store cost of new_pop; 
                   end if 
              END STEP 4 
         END STEP 3 
         merge population array with new_pop array; 
         sort and find best solution;  
         update heat radiation (decrease);  
         update attenuation coefficient (decrease); 
         update mutation coefficient (decrease); 
    END STEP 2 
END STEP 1 

 
In Algorithm 1, Equation 4 uses the result calculated in 

Equation 3 that is the coordinated spiral-like movement. Also, 
Equation 3 uses the result obtained from Equation 2, which is 
attractiveness. In the algorithm, we first get a copy of the 
population and then perform cost calculations on the new 
population. That is, the evaluation is done in the inner loop. 
Outside of the loop, the initial population (initial costs) is 
merged with the new population (new costs) and the best are 
selected. This process continues. 

Proper adjustment of the parameters used in the algorithm to 
achieve desirable results is an important step. In our 
implementation, the initial ߤ = 1	and the initial ߮ = 0.4. 

j i

k
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Decreasing the parameters could happen in any manner. These 
changes can be linear or exponential. In the implementation, we 
used exponential changes. Thus, in each iteration, the parameter 
value ߮ is multiplied by 0.2. The goal is to reduce ߮ gradually 
because we need exploitation over time. This decrease in the 
value of ߮ causes the exploration to decrease and the 
exploitation to increase. Also in each iteration, the value of ߤ is 
multiplied by 0.98. The benefit is that the EPC algorithm can 
initially searching the space very quickly and testing many 
values, then calming down and converging to the best found 
positions.  

For the algorithm, it has been inspired by the nature that after 
a while the value of heat radiation by the penguin decreases 
(due to energy consumption and metabolism). This reduction is 
very slight but there is. Also, as the huddle becomes denser over 
time, the penguin does not need to generate more heat to attract 
other penguins and reduces his own heat. In nature, this results 
in a concept of thermal equilibrium within the huddle after a 
while. So in our implementation, we multiply heat radiation by 
0.98 after each iteration to reduce it. 

III. DESIGNING A SIMPLE NEURO-FUZZY SYSTEM 

In this section, we designed a neuro-fuzzy system model 
based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) 
[23]. The purpose of designing this Sugeno type system is to 
prepare algorithms and create experimental space. This system 
used a simple dataset. In the experiment section, benchmark 
datasets are connected or replaced to this system. 

To design the above mentioned neuro-fuzzy system model, 
we create a simple dataset. In this model, a series of values as 
Input ݔ has been expanded regularly with an arithmetic 
progression in the range of ሾ0,  ሿ. The number of these valuesߨ2
is 50 and Target ݐ is sin  First, we have a basic fuzzy system .ݔ
that we create by using the Fuzzy c-means (FCM) [24] method. 
The basic fuzzy system generated using FCM by extracting a 
set of rules that models the data behavior. This case requires 
separate sets of input and output data as input arguments. This 
method will ultimately receive the inputs and targets and deliver 
the basic Fuzzy Inference System (FIS). The IF-THEN rule is 
widely used by the fuzzy inference system to compute the 
degree to which the input data matches the condition of a rule. 
The FCM-based design approach in this paper is that for each 
cluster, one rule is considered. In the designed system the 
number of rules does not change but the parameters of the rules 
can be changed. The number of clusters determines the number 
of rules and membership function in generated FIS. The type of 
input membership functions are Gaussian. The output 
membership function is also as a linear type. In this state, we 
have a basic fuzzy system that we can train it by applying the 
optimization algorithms. Assume that the basic FIS has a vector 

of numbers (݌଴ሬሬሬሬԦ), that the numbers are the parameters. Therefore 
we have ݌ଵ଴, ,ଶ଴݌ … ,  ௡଴. If we want to change the values of the݌

vector parameters ݌଴ሬሬሬሬԦ with an optimization algorithm, the range 
of changes is unknown. One of the ways that we can solve this 
issue is to consider ݌ଵ଴ as the basis, and we want to change the 
default value to the optimal values of ݌ଵ, ,ଶ݌ … ,  ௡. We assume݌

that ݌௜ =  ௜଴ is the analogous parameter value in the basic FIS. In this݌ .௜ is the optimal value and is unknown݌ ௜଴, where݌௜ݔ
case, for example, if ݔ௜ = 1, then ݌௜ is equal to ݌௜଴. Therefore, 
the optimization algorithm will determine the value of ݔ௜. With 
a simpler description, we want to extract all the parameters of 
membership functions from their own place, optimize them and 
set these optimized parameters in their own place. If we want to 
see the result accurately, we can implement the testing part with 
1000 data. In this way, the error can be calculated. Fig 3, shows 
the phases of this fuzzy system by the flowchart. 

 

 
Fig. 3. Flowchart of designing a simple neuro-fuzzy system. 

 
After designing the model, we run it. The basic FIS is 

created. Fig 4 (left) represents the basic FIS. The Target 
diagram (red dots) is clear in the figure. However, the Output 
diagram (blue line) of the model is very different from the 
Target diagram. Because the Output has not yet been trained. 
The training is done through the EPC optimization algorithm, 
which result is seen in Fig 4 (right). In the right figure, the 
Output and Target diagrams are exactly in the same path.  

 

 
Fig. 4. The FIS before (left) and after (right) training using EPC optimization 
algorithm. 

 
We want to evaluate the behavior of the fuzzy system with 

respect to the data. The training phase in this system is 
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optimizing the behavior of the system to the behavior that 
should be. The general purpose of the system is to receive inputs 
and generate outputs. In Fig 5, Target is the output of the 
system, and Output is the output of the model. When the model 
accurately describes the system that for each input, Target and 
Output are equal. So, if we measure the difference between 
Target and Output, we get the Error. If for every input the Error 
is zero, it means that the model works exactly like the system, 
which in general is not possible. But the Error can be 
minimized. 

 

 
Fig. 5. Fuzzy system schema. 

 
For each sample of Input ݔ௜, Target ݐ௜ and Output ݕ௜ are 

available. From the calculation of the difference between ݐ௜ and ݕ௜, the Error ݁௜ is obtained (݁௜ = ௜ݐ −  ௜). In this way, the Meanݕ
Square Error (MSE) for all possible instances can be written as 
Equation 5, 
ܧܵܯ  = 1ܰ෍݁௜ଶே

௜ୀଵ  (5) 

 
Sometimes the MSE equation is also called the cost function, 

error function, and performance index. If the parameter settings 
change for the model, in fact, the behavior of the model 
becomes closer to the behavior of the system. The value of the 
cost function must be minimized. This is possible by changing 
the parameter settings. This phase is called the training phase. 
For directly interpretable in terms of measurement units, the 
Root Mean Square Error (RMSE) is also used. That is, 
 

ܧܵܯܴ = ඩ1ܰ෍݁௜ଶே
௜ୀଵ  (6) 

 
After the evaluation, the result of RMSE at the training phase 

is 0.0016. In the testing phase, RMSE is 0.0015. This shows 
that training and testing are well done. Fig 6 shows the error 
diagram in the training and testing phase. 
 

 
Fig. 6. Error diagram in the training phase (left) and the testing phase (right) 
obtained using EPC optimization algorithm. 

 
In this section, a simple neuro-fuzzy system was created. The 

aim was the configuration and correct combination of the 
neuro-fuzzy system with the optimization algorithm. The 
system works correctly. Now the system is ready to experiment 
optimization algorithms by connecting benchmark datasets. In 
the next section, the details of the experiments are described. 

IV. EXPERIMENTAL RESULTS 

This experiment section is divided into two parts. The first 
part (Part A) is based on the iterations of each algorithm. The 
second part (Part B) is based on the number of fitness function 
calls (NFC) or the number of function evaluations in the 
optimization algorithms. 

Hence, four criteria have been used for evaluation of the 
iteration based experiment. As previously mentioned, if the 
Target is ݐ௜, the Output is ݕ௜, and the Error is ݁௜, the Error value 
is equal to ݁௜ = ௜ݐ −  ௜. So the first criterion is the mean ofݕ
errors. The second criterion is the standard deviation of errors. 
Eventually, MSE and RMSE are the third and fourth criteria for 
experiments, respectively. For the NFC based experiment, in 
addition to the above criteria, the CPU time is also recorded. 

To validate the performance of training, the six well-known 
algorithms are chosen for comparison and training the FIS. 
These are Genetic Algorithm (GA) [25], Particle Swarm 
Optimization (PSO) [26], Artificial Bee Colony (ABC) [27], 
Differential Evolution (DE) [28], Ant Colony Optimization 
(ACO) [29], and Invasive Weed Optimization (IWO) [30]. In 
addition to the above mentioned optimization algorithms, the 
ANFIS technique [23] was also used in experiments. ANFIS 
used a hybrid learning algorithm to identify parameters of 
Sugeno-type fuzzy inference systems. It applies a combination 
of the least-squares estimation method with the 
backpropagation gradient descent method for training FIS 
membership function parameters to emulate a given training 
dataset. 

Also, seven real-world and benchmark datasets were selected 
for experiments. These datasets are shown in Table I. These 
selected datasets are Abalone Shell Rings, Body Fat 
Percentage, Breast Cancer Wisconsin, Chemical Sensor, House 
Pricing, Iris, and Wine, which are available in the repository of 
the machine learning databases [31].  
 

TABLE I 
DATASETS USED FOR THE EXPERIMENTS 

Dataset Attributes 
FCM-based 
intended 
clusters 

Number of 
Parameters 
(Dimensions) 

Abalone Shell Rings 8 10 250 

Body Fat Percentage 13 10 400 

Breast Cancer Wisconsin 9 2 56 

Chemical Sensor 8 10 250 

House Pricing 13 10 400 

Iris 4 3 39 

Wine 13 3 120 

 
Table I shows the number of attributes, the number of FCM-

based intended clusters, and the number of parameters available 
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in the neuro-fuzzy system based on each dataset. In fact, the 
number of parameters also describes the dimensions of the 
problem. For example, in our implementation for Abalone Shell 
Rings dataset which has eight inputs, 10 clusters are considered 
based on FCM, and for each input 10 membership functions and 
10 rules are considered. We have two parameters for input 
membership functions because it is Gaussian. In this way, input 
membership functions are 160. Also, we have three parameters 
for the output membership function because it is linear. So, the 
output membership function parameters are 90. Overall, there 
are 250 parameters that represent the dimensions.  

In order that the experiment results be comparable, the 
settings of all algorithms are similar to each other. In the 
iteration based experiment, the number of iteration is 
considered 1000. This means that the algorithms stop as soon 
as they reach to iteration number 1000. In the NFC based 
experiment, if the number of fitness function calls reaches 
15000, the algorithm stops. The initial population is considered 
30 in all algorithms. All parameters settings of the EPC 
algorithm mentioned in Section II have been used for the 
experiments without changes. Some parameters are selected for 
some other algorithms through manual tuning. For example, the 
mutation and crossover rate in the GA are tune-up to get the 
best training. All evaluation experiments have been run on an 
Intel® Pentium® processor CPU G645 2.90 GHz with 2 GB 

RAM. Implementations have been run on MATLAB R2015b 
for coding. 

To get reliable results, the collection of very diverse datasets 
are considered. There are small and simple or large and 
complex datasets in the selected datasets for experiments. For 
each dataset, 70% of their data are selected for training.  

 

A. Iteration based experiment 
As described in the previous section, assume that the basic 

fuzzy system is a FIS, which has a vector of numbers (݌଴ሬሬሬሬԦ), that 
the numbers are the parameters. So there are ݌ଵ଴, ,ଶ଴݌ … ,  ௡଴. If݌

we want to change the values of the vector parameters ݌଴ሬሬሬሬԦ with 
an optimization algorithm, the range of changes is unknown. 
We can consider ݌ଵ଴ as the basis, and now we want to change 
the default value to the optimal values of ݌ଵ, ,ଶ݌ … ,  ௡. Assume݌
that ݌௜ =  ௜଴ is the analogous parameter value in the initial FIS as݌ .௜ is the optimal value and is unknown݌ ௜଴, where݌௜ݔ
previously mentioned. For example, if ݔ௜ = 1, then ݌௜ is equal 
to ݌௜଴. Therefore, the optimization algorithm will determine the 
value of ݔ௜. Table II shows the results of four criteria obtained 
by applying optimization algorithms on benchmark datasets for 
the training phase. 

Table II shows the results of training the neuro-fuzzy system 
using 70% of data. The ANFIS technique used in this paper, 

TABLE II 
THE RESULTS OF FOUR CRITERIA OBTAINED BY APPLYING OPTIMIZATION ALGORITHMS ON BENCHMARK DATASETS FOR TRAINING PHASE BASED ON ITERATION 

Dataset Criteria 
Algorithms 

ANFIS GA PSO ABC DE ACO IWO EPC 
Abalone Shell 
Rings 

Mean of Errors 
StD of Errors  
MSE 
RMSE 

2.75e-08 
2.1342 
4.5530 
2.1338 

0.0437 
2.2150 
4.9064 
2.2150 

0.0045 
2.1029 
4.4206 
2.1025 

0.0004 
2.2302 
4.9719 
2.2298 

0.0032 
2.2459 
5.0424 
2.2455 

0.0006 
2.2206 
4.9294 
2.2202 

0.0053 
2.1210 
4.4971 
2.1206 

0.0354 
2.0584 
4.2369 
2.0584 
 

Body Fat 
Percentage 

Mean of Errors 
StD of Errors  
MSE 
RMSE  

-6.28e-05 
3.8965 
15.0964 
3.8854 

0.2056 
4.0045 
15.9870 
3.9984 

2.50e-14 
4.0436 
16.2582 
4.0321 

-2.13e-15 
4.1883 
17.4426 
4.1764 

9.75e-15 
4.1411 
17.0512 
4.1293 

-5.39e-15 
3.9246 
15.3148 
3.9134 

-1.05e-14 
3.7956 
14.3249 
3.7848 

0.3484 
3.4545 
11.8670 
3.4449 
 

Breast Cancer 
Wisconsin 

Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

3.09e-09 
0.1544 
0.0238 
0.1542 

0.0133 
0.1723 
0.0298 
0.1726 

-0.0079 
0.1499 
0.0225 
0.1500 

0.0232 
0.1911 
0.0369 
0.1923 

-0.0059 
0.1947 
0.0378 
0.1946 

-1.32e-15 
0.1904 
0.0361 
0.1902 

-0.0003 
0.1523 
0.0231 
0.1521 

-6.88e-06 
0.1270 
0.0161 
0.1269 

Chemical Sensor Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

-4.8424 
31.3137 
1001.1843 
31.6415 

-0.1118 
2.2561 
5.0881 
2.2557 

5.62e-14 
2.2593 
5.0898 
2.2561 

1.65e-13 
2.3753 
5.6259 
2.3719 

0.0090 
2.3002 
5.2758 
2.2969 

1.12e-14 
2.4688 
6.0776 
2.4653 

-6.35e-14 
2.4169 
5.8247 
2.4134 

0.0147 
1.9839 
3.9246 
1.9811 

House Pricing Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

3.44e-06 
3.0636 
9.3590 
3.0593 

-0.0772 
4.3918 
19.2391 
4.3862 

-0.0069 
3.2515 
10.5424 
3.2469 

6.82e-15 
4.7533 
22.5298 
4.7466 

-0.0701 
4.3101 
18.5296 
4.3046 

3.73e-15 
4.6696 
21.7440 
4.6630 

-0.0476 
3.5389 
12.4908 
3.5342 

0.0197 
2.9222 
8.5157 
2.9182 

Iris Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

5.80e-09 
0.0160 
0.0002 
0.0160 

0.0043 
0.0488 
0.0023 
0.0487 

0.0001 
0.0356 
0.0012 
0.0354 

-2.66e-17 
0.1434 
0.0203 
0.1428 

0.0143 
0.1315 
0.0173 
0.1316 

1.98e-16 
0.1448 
0.0207 
0.1441 

0.0015 
0.0342 
0.0011 
0.0341 

-1.37e-07 
1.94e-05 
3.71e-10 
1.93e-05 

Wine Mean of Errors 
StD of Errors  
MSE 
RMSE 

9.49e-07 
0.0432 
0.0018 
0.0430 

-0.0150 
0.1404 
0.0197 
0.1406 

8.08e-05 
0.1462 
0.0212 
0.1456 

2.13e-17 
0.1606 
0.0256 
0.1600 

0.0007 
0.1642 
0.0267 
0.1636 

-7.67e-16 
0.1707 
0.0289 
0.1700 

0.0006 
0.0827 
0.0067 
0.0823 

-0.0002 
0.0298 
0.0008 
0.0297 
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which uses the hybrid optimization algorithm, has good results. 
The PSO and IWO algorithms also have acceptable results and 
are better than ANFIS. The GA is average. It seems that the 
ABC, DE and ACO algorithms are not suitable for the model 
presented in this paper. Maybe these algorithms need to change 
their settings for use in this type of problem. Therefore, 
checking the suitability of these algorithms can be the subject 
of further researches. However, these algorithms do not provide 
good results. The proposed EPC algorithm has very good 
results. This algorithm has the lowest RMSE in seven out of 
seven datasets. Fig 7 shows the difference between Targets and 
Outputs in the data training state for each dataset obtained by 
the EPC optimization algorithm.  

The testing phase is the remaining part of the data used to 
provide an unbiased evaluation of a final model fit on the 
training dataset. If a model fit to the training dataset also fits the 
testing dataset well, minimal over fitting has taken place. A 
better fitting of the training dataset, as opposed to the testing 
dataset, usually points to over fitting. Table III shows the results 

of four criteria obtained by applying optimization algorithms on 
benchmark datasets for the testing phase. 

The results obtained by the EPC optimization algorithm are 
good and acceptable. Although the results can be improved. For 
example, some techniques such as cross-validation can be used 
and can be the subject of further researches. However, the 
results show that the EPC algorithm is also successful in the 
testing phase. This algorithm has the lowest rate of error in 
seven out of seven datasets. The ANFIS technique failed to 
perform the testing phase. After EPC, the IWO and PSO 
algorithms have good performance. The genetic algorithm has 
not provided the expected results. Other algorithms such as 
ACO, DE, and ABC do not provide acceptable results. Fig 8 
shows the Error graph in data testing mode for each dataset 
obtained by EPC optimization algorithm.  
 

B. NFC based experiment 
As mentioned earlier, we once again performed the 

 
Fig. 7. Difference between Targets, Outputs and Errors in data training mode by applying EPC optimization algorithm. (a) is Abalone Shell Rings dataset. (b) is
Body Fat Percentage dataset. (c) is Breast Cancer Wisconsin dataset. (d) is Chemical Sensor dataset. (e) is House Pricing dataset. (f) is Iris dataset. (g) is Wine
dataset. The results obtained by iteration based experiment. 
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experiment based on NFC. Also in this type of experiment, 
CPU time is recorded. In addition, the stop condition is reached 
15,000 calls. Given the type of issue, this number seemed 
appropriate. The goal was for the algorithms to have enough 
time to solve the problem. This enables them to be better 

analyzed. In this type of issue, the lower number of fitness 
function calls in could have made the algorithms fail to perform 
well.  

The NFC based experiment was performed only between the 
optimization algorithms used in this paper. Also, 70% of the 

TABLE III 
THE RESULTS OF FOUR CRITERIA OBTAINED BY APPLYING OPTIMIZATION ALGORITHMS ON BENCHMARK DATASETS FOR TESTING PHASE BASED ON ITERATION 

Dataset Criteria 
Algorithms 

ANFIS GA PSO ABC DE ACO IWO EPC 
Abalone Shell 
Rings 

Mean of Errors 
StD of Errors  
MSE 
RMSE 
 

0.0311 
2.2311 
4.9747 
2.2304 

-0.0031 
2.1196 
4.4891 
2.1188 

-0.0218 
2.1242 
4.5092 
2.1235 

-0.0538 
2.1821 
4.7607 
2.1819 

-0.0360 
2.1420 
4.5856 
2.1414 

0.0867 
2.2028 
4.8561 
2.2036 

-0.0738 
2.1032 
4.4254 
2.1037 

-0.0475 
2.0130 
4.0510 
2.0127 

Body Fat 
Percentage 

Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

-0.0708 
4.4219 
19.3010 
4.3933 

-0.5682 
7.2811 
52.6393 
7.2553 

0.7012 
4.8134 
23.3557 
4.8328 

-0.6549 
5.4386 
29.6179 
5.4422 

-0.2461 
4.7477 
22.3044 
4.7227 

-0.7238 
5.4551 
29.8908 
5.4673 

-0.6815 
5.1754 
26.8971 
5.1862 

-0.2470 
4.1623 
17.1579 
4.1422 

Breast Cancer 
Wisconsin 

Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

0.0020 
0.1994 
0.0396 
0.1990 

0.0089 
0.1965 
0.0385 
0.1962 

-0.0160 
0.1863 
0.0348 
0.1865 

-0.0031 
0.1872 
0.0348 
0.1867 

-0.0530 
0.1797 
0.0349 
0.1870 

0.0080 
0.1991 
0.0395 
0.1988 

0.0081 
0.1751 
0.0305 
0.1749 

-0.0208 
0.1564 
0.0247 
0.1574 

Chemical Sensor Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

0.7572 
43.1220 
1847.60 
42.9837 

-0.2147 
2.4416 
5.9673 
2.4428 

0.0332 
2.7092 
7.2913 
2.7002 

0.2612 
2.3574 
5.5885 
2.3640 

-0.6033 
2.4796 
6.4710 
2.5438 

0.1465 
2.5414 
6.4367 
2.5371 

0.0416 
2.2799 
5.1649 
2.2726 

0.2130 
2.1127 
4.4788 
2.1163 

House Pricing Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

0.9332 
21.3118 
436.5705 
20.8943 

-0.0387 
4.8672 
23.5353 
4.8513 

0.0433 
4.4899 
20.0285 
4.4753 

-0.3015 
4.6635 
21.6960 
4.6579 

0.1935 
5.4785 
29.8537 
5.4639 

0.3160 
4.7637 
22.6433 
4.7585 

0.2217 
4.6083 
21.1460 
4.5985 

0.1374 
3.5604 
12.6121 
3.5513 

Iris Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

0.0015 
0.0130 
0.0001 
0.0129 

0.0232 
0.1084 
0.0120 
0.1097 

-0.0125 
0.0291 
0.0009 
0.0313 

0.0582 
0.1386 
0.0221 
0.1489 

0.0083 
0.1504 
0.0222 
0.1490 

-0.0011 
0.1481 
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0.1465 
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Fig. 8. The Error graph in data testing mode by applying EPC optimization algorithm. (a) is Abalone Shell Rings dataset. (b) is Body Fat Percentage dataset. (c) 
is Breast Cancer Wisconsin dataset. (d) is Chemical Sensor dataset. (e) is House Pricing dataset. (f) is Iris dataset. (g) is Wine dataset. 
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data was used to training the neuro-fuzzy system. The training 
and testing results are shown in Tables IV and V. In the training 
phase, as Table IV shows, the lowest RMSE value is related to 
the EPC algorithm. This algorithm was able to record the best 
performance in six datasets. Only on the House Pricing dataset, 
the PSO algorithm is better than other algorithms. However, in 
this case, the EPC algorithm is better than others after the PSO. 
GA and IWO algorithms also have acceptable results. It is clear 
that the ABC, DE and ACO algorithms did not provide good 
answers. The error rates in these algorithms are high. For the 
Iris dataset, which is a simple dataset, the performance of the 
proposed algorithm is very well. This shows that this algorithm 
performs well in the training phase with respect to NFC. Of 
course, the results for more complex datasets such as Abalone 
Shell Rings, Body Fat Percentage and Chemical Sensor are also 
favorable. 

In the testing phase, we also obtained the expected results. In 
Table V, which shows the testing phase, the best overall 
performance is related to the EPC algorithm. This algorithm has 
been successful in six datasets. Only on the Wine dataset, the 
IWO algorithm is better and after IWO the EPC has good 
performance. The GA and PSO algorithms also worked 
mediocrity in the testing phase. According to observations 
similar to the training phase, the ABC, DE and ACO algorithms 
do not perform well. It is obvious that they are not suitable for 

such issues. The EPC algorithm has also been successful in 
solving complex datasets. In addition to the acceptable results, 
the CPU consumption of the EPC algorithm is appropriate. 
Table VI shows the total time consumed by the CPU when 
calling the fitness function. This time is in seconds. The 
recorded time of the EPC algorithm in five datasets out of seven 
datasets is less than the other algorithms. Only for two datasets, 
the CPU consumption of the GA is better than the other 
algorithms.  

 
TABLE VI 

CPU CONSUMING BETWEEN OPTIMIZATION ALGORITHMS  

Dataset 
CPU Time for Algorithms 

GA PSO ABC DE ACO IWO EPC 
Abalone 
Shell Rings 

203.17 210.69 223.05 234.38 226.04 224.88 205.47 

Body Fat 
Percentage 

81.413 84.600 85.253 85.355 84.527 83.186 83.803 

Breast 
Cancer 

27.455 28.513 27.094 27.832 27.518 27.656 26.254 

Chemical 
Sensor 

66.892 66.047 66.481 66.895 65.985 68.034 65.374 

House 
Pricing 

100.27 98.733 99.283 100.14 98.867 99.304 94.753 

Iris 18.903 18.706 18.963 19.516 18.676 18.622 18.259 
Wine 33.285 33.155 33.730 33.771 33.249 32.939 32.236 

 

TABLE IV 
THE RESULTS OF FOUR CRITERIA OBTAINED BY APPLYING OPTIMIZATION ALGORITHMS ON BENCHMARK DATASETS FOR TRAINING PHASE BASED ON NFC 

Dataset Criteria 
Algorithms 

GA PSO ABC DE ACO IWO EPC 
Abalone Shell 
Rings 

Mean of Errors 
StD of Errors  
MSE 
RMSE 
 

-0.2408 
2.1239 
4.5654 
2.1367 

-9.90e-05 
2.1451 
4.5998 
2.1447 

0.0012 
2.2331 
4.9852 
2.2327 

0.0132 
2.2151 
4.9051 
2.2147 

-3.75e-15 
2.1538 
4.6374 
2.1535 

0.0204 
2.1102 
4.4517 
2.1099 

0.0085 
2.0702 
4.2842 
2.0698 

Body Fat 
Percentage 

Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

1.72e-14 
4.1001 
16.715 
4.0884 

5.61e-15 
4.0613 
16.4006 
4.0498 

9.29e-15 
3.9883 
15.8158 
3.9769 

-6.0053e-15 
4.1481 
17.1089 
4.1363 

0.4056 
3.8814 
15.1439 
3.6915 

0.0056 
4.1462 
17.0930 
4.1344 

0.2522 
3.6472 
13.2899 
3.6455 

Breast Cancer 
Wisconsin 

Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

-0.0191 
0.1826 
0.0336 
0.1834 

-0.0002 
0.1677 
0.0280 
0.1675 

-0.0001 
0.1560 
0.0243 
0.1559 

-0.0014 
0.1843 
0.0339 
0.1841 

-1.64e-15 
0.1968 
0.0386 
0.1966 

-1.48e-15 
0.1921 
0.0368 
0.1919 

-0.0052 
0.1254 
0.0157 
0.1254 

Chemical Sensor Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

0.1527 
0.3253 
5.4151 
2.3270 

1.61e-13 
2.3856 
5.6748 
2.3822 

-4.73e-14 
2.3832 
5.6633 
2.3798 

1.62e-15 
2.3502 
5.5074 
2.3468 

-2.30e-13 
2.4335 
5.9049 
2.4300 

-0.0087 
2.4088 
5.7859 
2.4054 

-2.23e-14 
2.2469 
5.0341 
2.2437 

House Pricing Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

0.0105 
4.1845 
17.4607 
4.1786 

-0.0448 
2.9421 
8.6335 
2.9383 

2.69e-14 
4.2503 
18.0139 
4.2443 

0.1347 
4.7326 
22.3526 
4.7279 

2.99e-15 
4.8694 
23.6443 
4.8625 

-0.0447 
3.7607 
14.1046 
3.7556 

0.1587 
3.3601 
11.2834 
3.3591 

Iris Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

0.0019 
0.0903 
0.0080 
0.0899 

0.0004 
0.0236 
0.0005 
0.0235 

4.67e-17 
0.1396 
0.0193 
0.1389 

-0.0207 
0.1272 
0.0164 
0.1283 

1.14e-16 
0.1409 
0.0196 
0.1402 

0.0008 
0.0380 
0.0014 
0.0378 

-0.0017 
0.0183 
0.0003 
0.0183 

Wine Mean of Errors 
StD of Errors  
MSE 
RMSE 

0.0003 
0.1661 
0.0273 
0.1654 

0.0001 
0.1355 
0.0182 
0.1350 

-2.52e-16 
0.1686 
0.0282 
0.1680 

0.0028 
0.1610 
0.0257 
0.1604 

1.66e-16 
0.1709 
0.0289 
0.1702 

-0.0010 
0.1063 
0.0112 
0.1059 

0.0015 
0.1030 
0.0105 
0.1026 
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Somewhat, by observing the results table for the 
experiments, we can guess that the EPC algorithm is better than 
others. But without statistical analysis, it is impossible to 
accurately distinguish between them. In the next section, we 
used the statistical analysis to determine the difference between 
the algorithms.  

V. STATISTICAL ANALYSIS 

To find significant differences between the results obtained 
by algorithms, statistical analysis is used. This section is 
divided into two parts. The first part (Part A) is statistical 
analysis related to the results obtained from the iteration based 
experiment. The second part (Part B) is the NFC based 
experiment statistical analysis. 

 

A. Statistical analysis for iteration based experiment  
To detect significant differences in the results, Friedman and 

Iman-Davenport tests are employed [32, 33]. Table VII shows 
the ranking of optimization algorithms based on the RMSE 
criterion using the Friedman test in the iteration based 
experiment. As expected, the EPC algorithm is first in the 
ranking, then the IWO algorithm is located. In the next ranks, 
the algorithms are PSO, ANFIS technique, GA, DE, ACO, and 
ABC, respectively. 

Table VIII shows the iteration based results of the Friedman 
and Iman-Davenport tests. In this table, there is the Chi-Square 
value with seven degrees of freedom, and also there is the 
asymptotic significance of the test (p-value) with very close to 
zero value. Being close to the zero value of the asymptotic 
significance, the hypothesis is rejected. Therefore, it can be 
concluded that there is a significant difference in the 
performance of algorithms.  

 
TABLE VII  

RANKING OF THE ALGORITHMS BASED ON THE RMSE FOR TRAINING PHASE IN 

ITERATION BASED EXPERIMENT 

 
Algorithms 

ANFIS GA PSO ABC DE ACO IWO EPC 
Ranking 3.57 4.57 3.57 6.86 6.43 6.57 3.43 1.00 

 
TABLE VIII 

 RESULTS OF FRIEDMAN’S AND IMAN–DAVENPORT’S TESTS BASED ON RMSE 

FOR TRAINING PHASE IN ITERATION BASED EXPERIMENT  

Test method 
Chi-
Square 

Degrees of 
freedom 
(DF) 

p-Value Hypothesis 

Friedman 33.4761 7 2.16e-05 Rejected 
Iman–
Davenport 

12.9390 7 9.92e-09 Rejected 

 
Because a significant difference has been observed, Holm’s 

TABLE V 
THE RESULTS OF FOUR CRITERIA OBTAINED BY APPLYING OPTIMIZATION ALGORITHMS ON BENCHMARK DATASETS FOR TESTING PHASE BASED ON NFC 

Dataset Criteria 
Algorithms 

GA PSO ABC DE ACO IWO EPC 
Abalone Shell 
Rings 

Mean of Errors 
StD of Errors  
MSE 
RMSE 
 

-0.0968 
2.2033 
4.8625 
2.2051 

0.1107 
2.2954 
5.2767 
2.2971 

-0.0304 
2.2568 
5.0902 
2.2561 

0.0420 
2.2093 
4.8789 
2.2088 

0.0510 
2.3229 
5.3942 
2.3225 

-0.0434 
2.2643 
5.1248 
2.2638 

-0.0464 
2.1685 
4.7006 
2.1681 

Body Fat 
Percentage 

Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

1.5767 
4.7636 
24.8792 
4.9879 

0.3620 
4.5130 
20.2300 
4.4978 

-0.8899 
4.8910 
24.3994 
4.9396 

-0.4370 
4.4887 
20.0776 
4.4805 

0.0256 
4.5166 
20.1323 
4.4869 

0.0653 
4.6142 
21.0154 
4.5843 

-0.2249 
4.4532 
19.6204 
4.4295 

Breast Cancer 
Wisconsin 

Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

-0.0332 
0.1873 
0.0360 
0.1898 

-0.0001 
0.2113 
0.0444 
0.2108 

0.0100 
0.1743 
0.0303 
0.1742 

-0.0041 
0.2135 
0.0454 
0.2131 

0.0053 
0.1833 
0.0334 
0.1830 

-0.0152 
0.1946 
0.0379 
0.1947 

-0.0038 
0.1465 
0.0213 
0.1462 

Chemical Sensor Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

-0.0614 
2.3426 
5.4547 
2.3355 

-0.1861 
2.3268 
5.4121 
2.3264 

0.1424 
2.6291 
6.8859 
2.6241 

-0.7226 
2.3286 
5.9084 
2.4307 

-0.3555 
2.2418 
5.1185 
2.2624 

0.2371 
2.2677 
5.1643 
2.2725 

0.1191 
2.2145 
4.8852 
2.2102 

House Pricing Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

-0.1218 
5.0514 
25.3633 
5.0362 

0.1865 
4.9265 
24.1457 
4.9138 

0.2610 
4.9445 
24.3554 
4.9351 

0.2030 
4.8004 
22.9336 
4.7889 

0.7067 
5.6746 
32.4889 
5.6999 

-0.1473 
5.3433 
28.3851 
5.3278 

-0.8033 
4.2855 
18.8897 
4.3462 

Iris Mean of Errors 
StD of Errors  
MSE 
RMSE  
 

-0.0155 
0.0938 
0.0088 
0.0941 

-0.0084 
0.0388 
0.0015 
0.0392 

-0.0045 
0.1563 
0.0239 
0.1547 

-0.0341 
0.1552 
0.0247 
0.1572 

0.0010 
0.1538 
0.0231 
0.1521 

-0.0012 
0.0355 
0.0012 
0.0351 

0.0026 
0.0206 
0.0004 
0.0206 

Wine Mean of Errors 
StD of Errors  
MSE 
RMSE 

0.0031 
0.1858 
0.0338 
0.1841 

0.0078 
0.1776 
0.0310 
0.1761 

-0.0724 
0.1935 
0.0419 
0.2049 

0.0161 
0.2042 
0.0411 
0.2029 

-0.0060 
0.1945 
0.0371 
0.1927 

0.0267 
0.1298 
0.0172 
0.1313 

-0.0161 
0.1495 
0.0221 
0.1489 
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method is used as a post-hoc test to obtain the results of best 
performance compared to other performances. In this method, 
according to Friedman’s rank, the best rank is the EPC 
algorithm which is considered as a control algorithm and the 
confidence interval is 95% (ߙ = 0.05). The results are shown 
in Table IX. In the IWO, PSO, and ANFIS technique cases, 
there is no significant difference based on the Holm’s method 
results. However, the training results reported in Table II show 
that the proposed EPC approach outperforms IWO, PSO, and 
ANFIS technique in seven out of seven datasets. 
 

TABLE IX  
RESULTS OF THE HOLM’S METHOD BASED ON THE RMSE FOR TRAINING 

PHASE IN ITERATION BASED EXPERIMENT (EPC IS THE CONTROL ALGORITHM) 

Algorithm j α/j z-Score p-Value Hypothesis 

IWO 1 0.0500 1.855943 0.063461 Not Rejected 

PSO 2 0.0250 1.962869 0.049661 Not Rejected 

ANFIS 3 0.0166 1.962869 0.049661 Not Rejected 

GA 4 0.0125 2.726632 0.006398 Rejected 

DE 5 0.0100 4.147231 0.000033 Rejected 

ACO 6 0.0083 4.254157 2.100e-05 Rejected 

ABC 7 0.0071 4.475648 7.600e-06 Rejected 

 
A similar procedure was performed to prove significant 

differences in RMSE obtained in the testing phase. Table X 
shows the ranking of optimization algorithms based on the 
RMSE criterion (the RMSE results of Table III) using the 
Friedman test. In Table X, the best rank is related to the EPC 
algorithm. Table XI shows the results of the Friedman and 
Iman-Davenport tests based on the RMSE criterion in the 
iteration based experiment. In this table, the hypothesis is also 
rejected according to the p-value. There is a significant 
difference in the error rates. Also, Table XII shows the results 
of Holm’s method regarding the RMSE obtained in the testing 
phase. The results obtained by Friedman’s test indicate that the 
EPC algorithm is ranked first and there are significant 
differences in the results of the algorithms. Moreover, from the 
results of the Holm’s method in Table XII, it could be 
concluded that the control algorithm (EPC) in the testing phase 
performs significantly better regarding the RMSE than the 
remaining algorithms, with a significant level of 0.05. 

 
TABLE X 

RANKING OF THE ALGORITHMS BASED ON THE RMSE FOR TESTING PHASE IN 

ITERATION BASED EXPERIMENT 

 
Algorithms 

ANFIS GA PSO ABC DE ACO IWO EPC 
Ranking 6.29 4.86 4.14 5.00 5.43 5.71 3.57 1.00 

 
TABLE XI 

RESULTS OF FRIEDMAN’S AND IMAN–DAVENPORT’S TESTS BASED ON RMSE 

FOR TESTING PHASE IN ITERATION BASED EXPERIMENT 

Test method 
Chi-
Square 

Degrees of 
freedom (DF) 

p-
Value 

Hypothesis 

Friedman 22.3333 7 0.0022 Rejected 
Iman–
Davenport 

5.0250 7 0.0003 Rejected 

 

TABLE XII 
 RESULTS OF THE HOLM’S METHOD BASED ON THE RMSE FOR TESTING PHASE 

IN ITERATION BASED EXPERIMENT (EPC IS THE CONTROL ALGORITHM) 

Algorithm j α/j z-Score p-Value Hypothesis 

IWO 1 0.0500 1.962869 0.049661 Rejected 

PSO 2 0.0250 2.398214 0.016475 Rejected 

GA 3 0.0166 2.948123 0.003197 Rejected 

ABC 4 0.0125 3.055050 0.002250 Rejected 

DE 5 0.0100 3.383468 0.000715 Rejected 

ACO 6 0.0083 3.597321 3.215e-04 Rejected 

ANFIS 7 0.0071 4.040304 5.340e-05 Rejected 

 

B. Statistical analysis for NFC based experiment 
Once again, the same procedure was performed for NFC 

based experiment. Similar to the iteration based experiment to 
find significant differences between algorithms, the Friedman 
and Iman-Davenport tests are used. Table XIII shows the 
rankings obtained through the Friedman test. This ranking is 
calculated based on the RMSE criterion that exists in Table IV. 
In this ranking, the EPC algorithm is located in the first rank 
and after EPC, the PSO algorithm is placed. In the next ranks, 
the algorithms are GA, IWO, ABC, DE, ACO, respectively. 
Just like the iteration based experiment, the ABC, DE and ACO 
algorithms are at the last ranks. Table XIV shows the results of 
the Friedman and Iman-Davenport tests in NFC based 
experiment. In this table, there is the Chi-Square value with 6 
degrees of freedom, and also there is the asymptotic 
significance of the test (p-value) with very close to zero value. 
So the hypothesis is rejected. Therefore, it can be concluded that 
there is a significant difference in the performance of 
algorithms. The existence of a significant difference cause that 
Holm’s method is also used for this part. Holm's method is 
performed based on Friedman's ranking. Here, the best rank (the 
EPC algorithm) is chosen as the control algorithm. Also, like 
before, confidence interval is 95% (α = 0.05). 

 
TABLE XIII  

RANKING OF THE ALGORITHMS BASED ON THE RMSE FOR TRAINING PHASE IN 

NFC BASED EXPERIMENT 

 
Algorithms 

GA PSO ABC DE ACO IWO EPC 
Ranking 3.86 3.14 4.71 5.14 6.00 4.00 1.14 

 
TABLE XIV 

 RESULTS OF FRIEDMAN’S AND IMAN–DAVENPORT’S TESTS BASED ON RMSE 

FOR TRAINING PHASE IN NFC BASED EXPERIMENT  

Test method 
Chi-
Square 

Degrees of 
freedom 
(DF) 

p-Value Hypothesis 

Friedman 22.1020 6 0.00116 Rejected 
Iman–
Davenport 

6.6646 6 8.36e-05 Rejected 

 
The results are shown in Table XV. The results show that 

there is a significant difference between the EPC algorithm and 
the others except the PSO. In the PSO case, there is no 
significant difference based on Holm’s method results. 
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However, we observed that the EPC in much more better than 
PSO based on the results of Table IV. GA and IWO are 
mediocrity based on NFC in the training phase. 

 
TABLE XV  

RESULTS OF THE HOLM’S METHOD BASED ON THE RMSE FOR TRAINING 

PHASE IN NFC BASED EXPERIMENT (EPC IS THE CONTROL ALGORITHM) 

Algorithm j α/j z-Score p-Value Hypothesis 

PSO 1 0.0500 1.732050 0.083274 Not Rejected 

GA 2 0.0250 2.355589 0.018498 Rejected 

IWO 3 0.0166 2.476832 0.013257 Rejected 

ABC 4 0.0125 3.091710 0.00199 Rejected 

DE 5 0.0100 3.464101 0.000532 Rejected 

ACO 6 0.0083 4.208883 2.60e-05 Rejected 

 
Table XVI shows the ranking of optimization algorithms 

based on the RMSE criterion (the RMSE results of Table V) 
using the Friedman test. In Table XVI, the best rank is again 
related to the EPC algorithm. The IWO algorithm is in the next 
rank. Table XVII shows the results of the Friedman and Iman-
Davenport tests based on the RMSE criterion. In this table, the 
hypothesis is also rejected according to the p-value. There is a 
significant difference in the error rates. Also, Table XVIII 
shows the results of Holm’s method. The results of Holm’s 
method show that there is a significant difference between EPC 
and the others in the testing phase related to NFC based 
experiment. 

 
TABLE XVI 

RANKING OF THE ALGORITHMS BASED ON THE RMSE FOR TESTING PHASE IN 

NFC BASED EXPERIMENT 

 
Algorithms 

GA PSO ABC DE ACO IWO EPC 
Ranking 4.43 4.14 5.14 4.71 4.57 3.86 1.14 

 
TABLE XVII 

RESULTS OF FRIEDMAN’S AND IMAN–DAVENPORT’S TESTS BASED ON RMSE 

FOR TESTING PHASE IN NFC BASED EXPERIMENT 

Test method 
Chi-
Square 

Degrees of 
freedom 
(DF) 

p-Value Hypothesis 

Friedman 15.7959 6 0.01489 Rejected 
Iman–
Davenport 

3.6168 6 0.00655 Rejected 

 
TABLE XVIII 

 RESULTS OF THE HOLM’S METHOD BASED ON THE RMSE FOR TESTING PHASE 

IN NFC BASED EXPERIMENT (EPC IS THE CONTROL ALGORITHM) 

Algorithm j α/j z-Score p-Value Hypothesis 

IWO 1 0.0500 2.355589 0.018498 Rejected 

PSO 2 0.0250 2.598076 0.009377 Rejected 

GA 3 0.0166 2.849223 0.004383 Rejected 

ACO 4 0.0125 2.970467 0.002974 Rejected 

DE 5 0.0100 3.091710 0.00199 Rejected 

ABC 6 0.0083 3.464101 5.32e-04 Rejected 

VI. SOLVING A CLASSIC ENGINEERING PROBLEM 

An inverted pendulum is a pendulum that has its center of 
mass above its pivot point. It is unstable and without additional 
help will fall over. A pendulum with its bob hanging directly 
below the support pivot is at a stable equilibrium point. There 
is no torque on the pendulum so it will remain motionless, and 
if displaced from this position will experience a restoring torque 
that returns it toward the equilibrium position. Fig 9 shows a 
schematic drawing of the inverted pendulum on a cart. 
 

 
Fig. 9. A schematic drawing of the inverted pendulum on a cart. 

 
The state variables of this problem are: the movement with 

acceleration in the direction of the x-axis, that is, the amount of 
movement (ݔଵ); Derivative of movement or velocity (ݔଶ); The 
angle (ݔଷ) of the inverted pendulum from the y-axis; Angular 
acceleration of the pendulum (ݔସ). Equation 7 specifies these 
four state variables. 
ଵݔ  = ,ݔ ଶݔ = ሶݔ , ଷݔ = ,ߠ ସݔ = ሶߠ  (7) 
 

In fact, this is a quadratic system with four state variables. 
Equation 8 shows the dynamical equation of this system, 
ሶଵݔ  = ሶݔ = ሶଶݔ ଶݔ = =ሷݔ −݉݃ sin ଷݔ cos ଷݔ + ସଶݔ݈݉ sin ଷݔ + ఏ݂݉ݔସ cos ଷݔ + ܯܨ + (1 − cosଶݔଷ)݉ ሶଷݔ  = ሶߠ = =ሶସݔ ସݔ ܯ) +݉)(݃ sin ଷݔ − ఏ݂ݔସ) − ସଶݔ݈݉) sin ଷݔ + (ܨ cos ܯ)ଷ݈ݔ + (1 − cosଶݔଷ)݉)  

 

(8) 

 
where ܯ is the inverted pendulum mass. ݈ is the pendulum 
length. ఏ݂ is the amount of friction in the pendulum movement. ܨ it is the normal force applied to the cart. ܯ is the mass of cart. 
In this problem, if the angle is not zero, which means there is 
an error. Problem inputs are error (ߠ) and derivative of error. 
The output is the force ܨ. In this specific problem, determining 
the number of rules is different. In order to enable us to fine-
tune this particular system, for each input, we have five 
membership functions, and in total, there are 25 rules. The 
fuzzy rules is based on Table XIX. To begin the optimization, 
the amount of 0.2 was determined for ߠ. Fig 10 shows the 
results obtained by applying EPC and other optimization 
algorithms to this fuzzy problem. 
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TABLE XIX 
 FUZZY RULES OF INVERTED PENDULUM ߠߜ 

 ߠ
NB N Z P PB 

NB NB NM NS NS ZE 
N NM NS NS ZE PS 
ZE NS NS ZE PS PS 
P NS ZE PS PS PM 

PB ZE PS PS PM PB 

 

 
Fig. 10. Results obtained by applying EPC and other optimization algorithm 
to inverted pendulum problem. 

 
Fig 10 shows that the performance obtained by the EPC 

algorithm is better than other optimization algorithms. The EPC 
algorithm quickly shifts the angle ߠ to zero and determines the 
force ܨ faster than other algorithms. 

VII. DISCUSSION 

The combination of neural networks and fuzzy logic models 
in ANFIS form has many advantages. These advantages include 
solving complex problems and solving nonlinear problems. 
Because of the acceptable results, ANFIS is used in a wide 
range of applications such as classification or rule-based 
process control, and so on. Also, due to the existence of fuzzy 
logic and neural network, this model has strong computational 
complexity. ANFIS uses hybrid learning techniques. As 
mentioned, these techniques are a combination of 
backpropagation gradient descent and least-squares estimation. 
Due to the use of gradient descent, it may get caught in the local 
trap. To deal with this problem, one of the best way is to use 
metaheuristic algorithms. Metaheuristic algorithms have been 
used to solve many real-world problems. Also, these algorithms 
have been very successful in solving problems. These 
algorithms can be used to better training the ANFIS. Using a 
population-based algorithm to optimize the fuzzy system 
parameters could give an improvement to fuzzy system 
accuracy. 

As shown in the experiments, this paper used GA, PSO, ABC, 
DE, ACO, IWO and EPC optimization algorithms for ANFIS 
training. In different researches, GA and PSO based methods 
have been used more frequently. However, there are other 
algorithms that perform better than GA and PSO. There are 
many metaheuristic algorithms and all of them cannot be 

compared in one specific research. So this issue is a research 
gap and comparing different algorithms which have been less 
investigated can be the subject of further researches. This paper 
clearly shows that the EPC algorithm performs very well. The 
less commonly used IWO algorithm also has acceptable 
performance. Even better in some cases than GA and PSO. The 
GA and PSO algorithms have always been successful in solving 
various problems because of their improvements during the 
time. However, it is better to do more research on new 
algorithms like EPC, because they also have the potential to 
improve. 

Occasionally with slight iterations and sometimes with much 
iterations we may reach an appropriate threshold for training. 
But the purpose of this paper was to use a certain number of 
iterations to compare the algorithms. So, experimenting with 
the exact number of iterations can be the subject of further 
researches. Reducing the error rate helps the system to be well 
trained. This means that, in the testing phase, the robust results 
can be achieved. Sometimes some algorithms cannot replace 
the optimal parameters. This means that the algorithm is not 
capable of dealing with the problem. From the selected 
algorithms in this paper, the ABC, DE and ACO algorithms are 
incapable of solving the problem. The PSO and GA algorithms, 
which are widely used in research, are capable of solving the 
designed system, but they did not surprise us much. They were 
very mediocrity. In order to get better results from these two 
algorithms, it may be necessary to increase the share of their 
training data. The IWO algorithm performed better than GA 
and PSO. We knew that the proposed algorithm, namely EPC, 
had many potentials. We also obtained the expected results. 
This algorithm was quite successful in optimizing the fuzzy 
system parameters. This shows that the spiral-like movement 
used in this algorithm was quite effective. The EPC algorithm 
was more successful in the training and testing phases than the 
other algorithms. This is because the EPC algorithm has 
memory and knowledge of good solutions is maintained by all 
penguins. So the population always share their knowledge with 
others. When we talking about ANFIS training based on 
metaheuristic techniques, it is important to use flexible 
techniques in global optimal search. Using information sharing 
among the population makes the EPC algorithm converged at a 
very high speed in finding a global optimal solution. 

The approach of optimizing the Neuro-Fuzzy System based 
on metaheuristics discussed in this paper was a systematic 
approach. This approach can be used to design any type of fuzzy 
system with slight modifications. The approach discussed in 
this paper was actually methods for training Neuro-Fuzzy 
System and determining the optimal values of their parameters 
using intelligent optimization algorithms. In fact, how to train 
the Neuro-Fuzzy System is expressed as an optimization 
problem and then solved using intelligent optimization 
algorithms. 

VIII. CONCLUSION 

In this paper, a neuro-fuzzy system based on an Adaptive 
Neuro-Fuzzy Inference System (ANFIS) was presented. The 
parameters of this system were optimized using the nature-
inspired Emperor Penguins Colony (EPC) algorithm. The 
purpose was to use the EPC algorithm as an application to 
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optimize the neuro-fuzzy system. The presented neuro-fuzzy 
system was compared with other neuro-fuzzy systems. 
Statistical analysis was used to reveal significant differences. 
The proposed approach was also used to solving the classical 
inverted pendulum problem. The results showed that the 
proposed approach had better performance and fewer errors.  
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